Investigation of Self-Excited Ultrahigh Speed Induction Generators for Distributed Generation Systems

Jardan, Rafael K.
Varga, Zoltan
Nagy, Istvan
Application of ultra high speed induction generators (IG) in a system developed for utilization of renewable and waste energies that can be applied in Distributed Generation System is presented. The energy conversion is made by a turbine-generator set. For the electromechanical energy conversion application of special high speed induction generators has been studied and described in the paper. The design and analysis of the system are relied on computer simulation techniques verified by test results.
nternational Aegean Conference on Electrical Machines and Power Electronics / Electromotion Joint Conference


Evaluation of Photovoltaic Systems For Reactive Power Compensation In Low Voltage Power Systems
Uğur, Mesut; Duymaz, Erencan; Göl, Murat; Keysan, Ozan (2018-10-25)
The four-quadrant operation ability of photovoltaic (PV) inverters makes them promising candidates for reactive power compensation in low voltage systems. In this paper, utilization of PV inverters instead of conventional reactive power compensation units is evaluated. The use of PV inverters for reactive power compensation as well as active power supplying is investigated considering a real life system. The considered system suffers from low capacitive power factor due to the connected online UPS system. T...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Numerical investigation of circulating fluidized bed riser hydrodynamics for concentrating solar thermal receiver applications
Bilyaz, Serhat; Tarı, İlker; Department of Mechanical Engineering (2015)
Various heat transfer fluids and thermal storage materials are considered for concentrating solar power systems to improve the storage capability of the system which compensates the fluctuating behavior of the solar resources. Solid particles can be a good alternative since they have high sensible heat capacity. In addition, they are cheap, environmentally benign and chemically and mechanically stable at high temperatures. In this thesis, hydrodynamics of circulating fluidized bed solar receiver was numeric...
Development of Nanocomposite Electrodes and Separators for Supercapacitors
Aydınlı, Alptekin; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2022-2-10)
Supercapacitors or electrochemical capacitors are known as one of the most promising energy storage systems for the 21st century. Having the potential to complement batteries, supercapacitors have received a lot of attention thanks to their high specific power and moderate energy densities. Supercapacitors have various application areas ranging from electric vehicles to portable systems and devices. In particular, their fast charge-discharge feature enables integration with consumer electronics, mobile devi...
Design and implementation of a 200w microinverter for grid connected photovoltaic energy conversion system
Kavurucu, Semih; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2014)
As one type of the grid-connected photovoltaic energy conversion systems, micro-inverters (MI, also known as Module Integrated Inverters, MII) are typically designed for residential applications with energy capacities of 3-5 kW and less, in order to provide PV module level energy generation, plug-N-play operation, minimization of the shading effects occurring on the PV module, and flexibility of installation. For the micro-inverter system which can be designed employing variety of topologies, interleaving f...
Citation Formats
R. K. Jardan, Z. Varga, and I. Nagy, “Investigation of Self-Excited Ultrahigh Speed Induction Generators for Distributed Generation Systems,” Istanbul, TURKEY, 2011, p. 550, Accessed: 00, 2020. [Online]. Available: