OPTIMAL CONTROLLER DESIGN FOR SPEED GOVERNORS OF HYDROELECTRIC POWER PLANT

2020-06-01
Altinoz, Okkes Tolga
KOŞALAY, İLHAN
Gezer, Derya
Speed governors have critical importance on hydroelectric power plants, which are adjusted to the rotating speed of hydroelectric generation based on load demand of the grid. The rotating speed is the main factor to balance power generation and load demand. The well-designed controller is needed to control speed governors with high accuracy. A well-defined model is needed to obtain desired control structure. Therefore, in this study, initially, the mathematical model of a hydroelectric power plant is obtained by using physical characteristics of a real-world. Then by using this model and corresponding real-world data, a set of controller parameters is designed by using tuning methodologies based on heuristic optimization algorithms, and their performances are compared with each other and with a classical tuning methodology. Evolutionary-based and nature-inspired-based heuristic optimization algorithms are selected as the tuning algorithms not only to compare the performance of these algorithms with a classical method but also with different origins. The performance of the optimized controller improves the performance of the overall system and helps to get desired performance. The results also indicate that as long as the desired performance criteria are defined as accurate as possible, the performance of the optimization algorithms is acceptable.
ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

Suggestions

Adaptive controller based on grid impedance estimation for stable operation of grid-connected inverters under weak grid conditions
Temiz, Hakan; Keysan, Ozan; Demirok, Erhan (Institution of Engineering and Technology (IET), 2020-10-01)
An electric grid having high impedance seen from the connection point is considered as a weak grid and it adversely affects the system stability of grid-tied voltage source inverters in renewable power devices. In this study, an adaptive controller is proposed by configuring the settling time of the phase-locked loop based on the estimated grid impedance. Pseudorandom binary sequence injection and Fourier techniques are carried out for grid impedance estimation. Impedance-based stability analysis is perform...
Fully Integrated Autonomous Interface With Maximum Power Point Tracking for Energy Harvesting TEGs With High Power Capacity
Tabrizi, Hamed Osouli; Jayaweera, Herath M. P. C.; Muhtaroglu, Ali (Institute of Electrical and Electronics Engineers (IEEE), 2020-05-01)
In this article, a novel fully autonomous and integrated power management interface circuit is introduced for energy harvesting using thermoelectric generators (TEGs) to supply power to Internet of Thing nodes. The circuit consists of a self-starting dc & x2013;dc converter based on a dual-phase charge pump with LC-tank oscillator, a digital MPPT unit, and a 1-V LDO regulator. The novel maximum power point tracking (MPPT) algorithm avoids open-circuit state, and accommodates varying input power and ultra-lo...
Inductor Saturation Compensation With Resistive Decoupling for Single-Phase Controlled VSC Systems
ÖZKAN, ZİYA; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2020-02-01)
In voltage-source converter systems, utilization of filter inductors with deep saturation characteristics is often advantageous because of the improved size, cost, and efficiency. However, with the use of conventional current regulation methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes the saturation compensation with resistive decoupling (SCRD) method to overcome these performance issues. The method converts ...
Power-Efficient Hybrid Energy Harvesting System for Harnessing Ambient Vibrations
Chamanian, Salar; Çiftci, Berkay; Ulusan, Hasan; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
This paper presents an efficient hybrid energy harvesting interface to synergistically scavenge power from electromagnetic (EM) and piezoelectric (PE) sources, and drive a single load. The EM harvester output is rectified through a self-powered active doubler structure, and stored on a storage capacitor. The stored energy is then transferred to the PE harvester to increase the damping force and charge extraction. The total synergistically extracted power from both harvesters is more than the power obtained ...
Efficiency calculation of feed structures and optimum number of antenna elements in a subarray for highest G/T
Demir, S (Institute of Electrical and Electronics Engineers (IEEE), 2004-04-01)
For an antenna array, different feed structure topologies may yield the same radiation characteristics. However, different topologies may result in different efficiency and noise performance. In this paper, parallel arm antenna arrays are analyzed for efficiency and noise temperature using the noise equivalent line length method (NELL) with the number of antenna elements in a subarray as a parameter. It is shown that efficiency of an antenna array feed structure as well as its noise temperature can be calcu...
Citation Formats
O. T. Altinoz, İ. KOŞALAY, and D. Gezer, “OPTIMAL CONTROLLER DESIGN FOR SPEED GOVERNORS OF HYDROELECTRIC POWER PLANT,” ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, pp. 72–84, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66672.