Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Strength, Stiffness, and Microstructure of Wood-Ash Stabilized Marine Clay
Date
2020-09-01
Author
Ekinci, Abdullah
Hanafi, Mohammad
Aydin, Ertug
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
472
views
0
downloads
Cite This
The world's population is growing at a rapid pace, thus increasing the need for shelter, which, because of increased carbon emissions, is making our planet less habitable. Thus, supplementary cementitious materials (SCMs) are used to reduce the embodied carbon emissions in the building sector. Wood-ash, as a replacement for cement in ground improvement, seems to be a promising material. In this study, we considered the strength, stiffness, and microstructural behavior of marine deposited clays of Cyprus treated with cement and wood-ash as a cement replacement. Since clay is abundant in nature, it could help stabilize waste to improve the mechanical behavior of produced composites. Portland cement (7%, 10%, and 13%) was replaced with various amount of wood-ash (5% and 10%) with two different dry densities (1400 and 1600 kg/m3) and three distinct curing periods (7, 28, and 60 days). Unconfined compressive strength (UCS), direct shear, porosity and pulse velocity tests were performed. Additionally, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy analysis (EDX) were performed for microstructural evaluation of clay-wood-ash-cement mixtures. The results revealed that the replacement of cement with 5% of wood-ash yielded superior performance. The microstructure investigation of wood-ash-cement-clay blends further showed the formation of a densified matrix with stable bonds. Furthermore, the porosity and strength properties (unconfined compressive strength, splitting tensile strength, cohesion (C) and friction angle (phi)) of blends have unique relationships with porosity and binder contents, which were further confirmed by other supplementary materials and soils.
Subject Keywords
Strength
,
Stiffness
,
Clay
,
Stabilization
,
Microstructure
,
Wood-ash
,
Waste
URI
https://hdl.handle.net/11511/66930
Journal
MINERALS
DOI
https://doi.org/10.3390/min10090796
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Sustainability and industrial design education: the case of the department of industrial design at METU, Turkey
Tural, Senem; Ünlü, Canan Emine; Department of Industrial Design (2009)
Problems that the earth has faced with such as the depletion of natural resources, contamination of water, air and land, extension of species, and the global warming have brought up the sustainable development to the agenda. This state of affairs has elicited the undeniable role of industrial design activity on the sustainable development; sustainability has become an important concern of industrial design education. The purpose of this study is to determine the state of sustainable design education in the ...
Modelling of carbon sink capacity of the Black Sea
Cengiz, Yelis; Yılmaz, Ayşen; Yücel, İsmail; Department of Earth System Science (2016)
The concentration of carbon dioxide in the atmosphere is constantly increasing due to human activities and results in global warming. Since Industrial Revolution 30 and 25 percentages of the anthropogenic atmospheric carbon dioxide are taken up by the forests and by the oceans respectively. Carbon dioxide is rising faster than biosphere can tolerate and the rest of the carbon dioxide which can not be hold, continues to accumulate and causes further heating of the atmosphere. The carbon sink capacity of the ...
Modeling of enhanced coalbed methane recovery from Amasra coalbed in Zonguldak coal basin
Sınayuç, Çağlar; Gümrah, Fevzi; Department of Petroleum and Natural Gas Engineering (2007)
The increased level of greenhouse gases due to human activity is the main factor for climate change. CO2 is the main constitute among these gases. Subsurface storage of CO2 in geological systems such as coal reservoirs is considered as one of the promising perspectives. Coal can be safely and effectively utilized to both store CO2 and recover CH4. By injecting CO2 into the coal beds, methane is released with CO2 adsorption in the coal matrix and this process is known as enhanced coal bed methane recovery (E...
Estimation of carbon footprint: a case study for Middle East Technical University
Turanlı, Ayşe Merve; Mehmetoğlu, Mustafa Tanju; Okandan, Ender; Department of Petroleum and Natural Gas Engineering (2015)
As the amount of the greenhouse gas emission increases, its effect on climate change becomes accordingly important. This fact is proved by the measurements conducted by NASA in terms of mole fraction of CO2. After 1950’s due to rapid rise in industrial activity of post-industrial revolution period, CO2 amount in the air increased constantly. Atmospheric concentration of CO2 increases at an accelerating rate . In year 2014, the CO2 emission value had reached 398.78 ppm. This increase led the investigators to...
Preparation and characterization of zeolite confined cobalt(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane
Rakap, Murat; Özkar, Saim; Department of Chemistry (2011)
Because of the growing concerns over the depletion of fossil fuel supplies, environmental pollution and global warming caused by a steep increase in carbon dioxide and other greenhouse gases in the atmosphere, much attention has been given to the development of renewable energy sources that are the only long-term solution to the energy requirements of the world’s population, on the way towards a sustainable energy future. Hydrogen has been considered as a clean and environmentally benign new energy carrier ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ekinci, M. Hanafi, and E. Aydin, “Strength, Stiffness, and Microstructure of Wood-Ash Stabilized Marine Clay,”
MINERALS
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66930.