Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
"The Best of Both Worlds!": Integration of Web Page and Eye Tracking Data Driven Approaches for Automatic AOI Detection
Date
2020-02-01
Author
Eraslan, Sukru
Yesilada, Yeliz
Harper, Simon
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
145
views
0
downloads
Cite This
Web pages are composed of different kinds of elements (menus, adverts, etc.). Segmenting pages into their elements has long been important in understanding how people experience those pages and in making those experiences "better." Many approaches have been proposed that relate the resultant elements with the underlying source code; however, they do not consider users' interactions. Another group of approaches analyses eye movements of users to discover areas that interest or attract them (i.e., areas of interest or AOIs). Although these approaches consider how users interact with web pages, they do not relate AOIs with the underlying source code. We propose a novel approach that integrates web page and eye tracking data driven approaches for automatic AOI detection. This approach segments an entire web page into its AOIs by considering users' interactions and relates AOIs with the underlying source code. Based on the Adjusted Rand Index measure, our approach provides the most similar segmentation to the ground-truth segmentation compared to its individual components.
Subject Keywords
Computer Networks and Communications
URI
https://hdl.handle.net/11511/67095
Journal
ACM TRANSACTIONS ON THE WEB
DOI
https://doi.org/10.1145/3372497
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Scanpath Trend Analysis on Web Pages: Clustering Eye Tracking Scanpaths
Eraslan, Sukru; Yesilada, Yeliz; Harper, Simon (Association for Computing Machinery (ACM), 2016-12-01)
Eye tracking studies have widely been used in improving the design and usability of web pages and in the research of understanding how users navigate them. However, there is limited research in clustering users' eye movement sequences (i.e., scanpaths) on web pages to identify a general direction they follow. Existing research tends to be reductionist, which means that the resulting path is so short that it is not useful. Moreover, there is little work on correlating users' scanpaths with visual elements of...
Second Chance: A Hybrid Approach for Dynamic Result Caching and Prefetching in Search Engines
Ozcan, Rifat; Altıngövde, İsmail Sengör; Barla Cambazoglu, B.; ULUSOY, ÖZGÜR (Association for Computing Machinery (ACM), 2013-12-01)
Web search engines are known to cache the results of previously issued queries. The stored results typically contain the document summaries and some data that is used to construct the final search result page returned to the user. An alternative strategy is to store in the cache only the result document IDs, which take much less space, allowing results of more queries to be cached. These two strategies lead to an interesting trade-off between the hit rate and the average query response latency. In this work...
Analyzing and Mining Comments and Comment Ratings on the Social Web
SİERSDORFER, Stefan; CHELARU, Sergiu; Pedro, Jose San; Altıngövde, İsmail Sengör; NEJDL, Wolfgang (Association for Computing Machinery (ACM), 2014-06-01)
An analysis of the social video sharing platform YouTube and the news aggregator Yahoo! News reveals the presence of vast amounts of community feedback through comments for published videos and news stories, as well as through metaratings for these comments. This article presents an in-depth study of commenting and comment rating behavior on a sample of more than 10 million user comments on YouTube and Yahoo! News. In this study, comment ratings are considered first-class citizens. Their dependencies with t...
How useful is social feedback for learning to rank YouTube videos?
CHELARU, Sergiu; Orellana-Rodriguez, Claudia; Altıngövde, İsmail Sengör (Springer Science and Business Media LLC, 2014-09-01)
A vast amount of social feedback expressed via ratings (i.e., likes and dislikes) and comments is available for the multimedia content shared through Web 2.0 platforms. However, the potential of such social features associated with shared content still remains unexplored in the context of information retrieval. In this paper, we first study the social features that are associated with the top-ranked videos retrieved from the YouTube video sharing site for the real user queries. Our analysis considers both r...
Exploiting interclass rules for focused crawling
Altıngövde, İsmail Sengör (Institute of Electrical and Electronics Engineers (IEEE), 2004-11-01)
A focused crawler gathers relevant Web pages on a particular topic. This rule-based Web-crawling approach uses linkage statistics among topics to improve. a baseline focused crawler's harvest rate and coverage.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Eraslan, Y. Yesilada, and S. Harper, ““The Best of Both Worlds!”: Integration of Web Page and Eye Tracking Data Driven Approaches for Automatic AOI Detection,”
ACM TRANSACTIONS ON THE WEB
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67095.