On Lyapunov inequality in stability theory for Hill's equation on time scales

Download
2000-01-01
Atici, FM
Guseinov, GS
Kaymakcalan, B
In this paper we obtain sufficient conditions for instability and stability to hold for second order linear Delta -differential equations on time scales with periodic coefficients.
JOURNAL OF INEQUALITIES AND APPLICATIONS

Suggestions

On Stability of Linear Delay Differential Equations under Perron's Condition
Diblík, J.; Zafer, A. (Hindawi Limited, 2011)
The stability of the zero solution of a system of first-order linear functional differential equations with nonconstant delay is considered. Sufficient conditions for stability, uniform stability, asymptotic stability, and uniform asymptotic stability are established.
Oscillation of Higher-Order Neutral-Type Periodic Differential Equations with Distributed Arguments
Dahiya, R. S.; Zafer, A. (Springer Science and Business Media LLC, 2007)
We derive oscillation criteria for general-type neutral differential equations [x(t) +αx(t− τ) +βx(t +τ)](n) = δ b ax(t − s)dsq1(t,s) + δ d c x(t + s)dsq2(t,s) = 0, t ≥ t0, where t0 ≥ 0, δ = ±1, τ > 0, b>a ≥ 0, d>c ≥ 0, α and β are real numbers, the functions q1(t,s) : [t0,∞) × [a,b] → R and q2(t,s):[t0,∞) × [c,d] → R are nondecreasing in s for each fixed t, and τ is periodic and continuous with respect to t for each fixed s. In certain special cases, the results obtained generalize and improve s...
On the reduction principle for differential equations with piecewise constant argument of generalized type
Akhmet, Marat (Elsevier BV, 2007-12-01)
In this paper we introduce a new type of differential equations with piecewise constant argument (EPCAG), more general than EPCA [K.L. Cooke, J. Wiener, Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl. 99 (1984) 265-297; J. Wiener, Generalized Solutions of Functional Differential Equations, World Scientific, Singapore, 1993]. The Reduction Principle [V.A. Pliss, The reduction principle in the theory of the stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1964) 1297...
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
Stability criterion for second order linear impulsive differential equations with periodic coefficients
Guseinov, G. Sh.; Zafer, Ağacık (Wiley, 2008-01-01)
In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Citation Formats
F. Atici, G. Guseinov, and B. Kaymakcalan, “On Lyapunov inequality in stability theory for Hill’s equation on time scales,” JOURNAL OF INEQUALITIES AND APPLICATIONS, pp. 603–620, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67128.