Virtual reality in requirement analysis for CIM system development suitable for SMEs

Erenay, O
Hashemipour, M
Kayaligil, S
This paper presents a methodology, based on Virtual Reality (VR), for representing a manufacturing system in order to help with the requirement analysis (RA) in CIM system development, suitable for SMEs. The methodology can reduce the costs and the time involved at this stage by producing precise and accurate plans, specification requirements, and a design for CIM information systems. These are essentials for small and medium scale manufacturing enterprises. Virtual Reality is computer-based and has better visualization effects for representing manufacturing systems than any other graphical user interface, and this helps users to collect information and decision needs quickly and correctly. A VR-RA tool is designed and developed as a software system to realize the features outlined in each phase of the methodology. A set of rules and a knowledge base is appended to the methodology to remove any inconsistency that could arise between the material and the information flows during the requirement analysis. A novel environment for matching the physical and the information model domains is suggested to delineate the requirements.


Real-time hardware-in-the-loop simulation of electrical machine systems using FPGAs
Üşenme, Serdar; Dilan, R.A.; Dölen, Melik; Koku, Ahmet Buğra (2009-11-18)
This study focuses on the development an integrated software and hardware platform that is capable of performing real-time simulation of dynamic systems, including electrical machinery, for the purpose of hardware-in-the-loop simulation (HILS). The system to be controlled is first defined using a block diagram editor. The defined model is then compiled and downloaded onto an FPGA (¿Field Programmable Gate Array¿) based hardware platform, which is to interface with the controller under test and carry out the...
Distributed adaptive output feedback control design and application to a formation flight experiment
Kutay, Ali Türker; Calise, Anthony J.; D'Andrea, Raffaello (2005-01-01)
An approach for augmenting existing distributed controller designs for large-scale interconnected systems with neural network based adaptive elements is proposed. It is assumed that the controllers are interconnected in the same way as the plant and based on the available measurements, a single hidden layer neural network is introduced for each subsystem to partially cancel the effects of the sub-system interconnections and modeling errors on tracking performance. Boundedness of error signals is shown throu...
Modeling heterogeneous internet of things systems using connectors in component oriented software engineering
Ünal, Selin; Dogru, Ali H.,; Department of Computer Engineering (2019)
In this thesis a solution for modeling heterogeneous IoT applications in component oriented software engineering is provided by using software connectors. IoT is interconnected devices or humans in the means of internet which gains more importance day by day in different areas of the world. This kind of powerful and complex systems have challenges to overcome in nature. Each IoT system component has specific set of rules for communicating with the other components. In order to be able to communicate, compon...
Guder, Mennan; Salor, Ozgul; Cadirci, Isik (2010-10-28)
In this paper, an integrated knowledge discovery strategy for high dimensional spatial power quality event data is proposed. Real time, distributed measuring of the electricity transmission system parameters provides huge number of time series power quality events. The proposed method aims to construct characteristic event distribution and interaction models for individual power quality sensors and the whole electricity transmission system by considering feasibility, time and accuracy concerns. In order to ...
Linear static analysis of large structural models on pc clusters
Özmen, Semih; Toker, Kurç; Department of Civil Engineering (2009)
This research focuses on implementing and improving a parallel solution framework for the linear static analysis of large structural models on PC clusters. The framework consists of two separate programs where the first one is responsible from preparing data for the parallel solution that involves partitioning, workload balancing, and equation numbering. The second program is a fully parallel nite element program that utilizes substructure based solution approach with direct solvers. The first step of data...
Citation Formats
O. Erenay, M. Hashemipour, and S. Kayaligil, “Virtual reality in requirement analysis for CIM system development suitable for SMEs,” INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, pp. 3693–3708, 2002, Accessed: 00, 2020. [Online]. Available: