Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonlocal operators with local boundary conditions in higher dimensions
Date
2019-02-01
Author
Aksoylu, Burak
Celiker, Fatih
Kilicer, Orsan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
229
views
0
downloads
Cite This
We present novel nonlocal governing operators in 2D/3D for wave propagation and diffusion. The operators are inspired by peridynamics. They agree with the original peridynamics operator in the bulk of the domain and simultaneously enforce local boundary conditions (BC). The main ingredients are periodic, antiperiodic, and mixed extensions of separable kernel functions together with even and odd parts of bivariate functions on rectangular/box domains. The operators are bounded and self-adjoint. We present all possible 36 different types of BC in 2D which include pure and mixed combinations of Neumann, Dirichlet, periodic, and antiperiodic BC. Our construction is systematic and easy to follow. We provide numerical experiments that verify our theoretical findings. We also compare the solutions of the classical wave and heat equations to their nonlocal counterparts.
Subject Keywords
Applied Mathematics
,
Computational Mathematics
URI
https://hdl.handle.net/11511/67242
Journal
ADVANCES IN COMPUTATIONAL MATHEMATICS
DOI
https://doi.org/10.1007/s10444-018-9624-6
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients
ÖZBEKLER, ABDULLAH; Wong, J. S. W.; Zafer, Ağacık (Elsevier BV, 2011-07-01)
In this paper we give new oscillation criteria for forced super- and sub-linear differential equations by means of nonprincipal solutions.
A new boundary element formulation for wave load analysis
Yalcin, O. Fatih; Mengi, Yalcin (Springer Science and Business Media LLC, 2013-10-01)
A new boundary element (BEM) formulation is proposed for wave load analysis of submerged or floating bodies. The presented formulation, through establishing an impedance relation, permits the evaluation of the hydrodynamic coefficients (added mass and damping coefficients) and the coefficients of wave exciting forces systematically in terms of system matrices of BEM without solving any special problem, such as, unit velocity or unit excitation problem. It also eliminates the need for scattering analysis in ...
Strictly singular operators and isomorphisms of Cartesian products of power series spaces
Djakov, PB; Onal, S; Terzioglu, T; Yurdakul, Murat Hayrettin (1998-01-02)
V. P. Zahariuta, in 1973, used the theory of Fredholm operators to develop a method to classify Cartesian products of locally convex spaces. In this work we modify his method to study the isomorphic classification of Cartesian products of the kind E-0(p)(a) x E-infinity(q) (b) where 1 less than or equal to p, q < infinity, p not equal q, a = (a(n))(n=1)(infinity) and b = (b(n))(n=1)(infinity) are sequences of positive numbers and E-0(p)(a), E(infinity)q(b) are respectively l(p)-finite and l(q)-infinite type...
Global existence and boundedness for a class of second-order nonlinear differential equations
Tiryaki, Aydin; Zafer, Ağacık (Elsevier BV, 2013-09-01)
In this paper we obtain new conditions for the global existence and boundedness of solutions for nonlinear second-order equations of the form
LOCAL OPERATOR ALGEBRAS FRACTIONAL POSITIVITY AND THE QUANTUM MOMENT PROBLEM
Dosi, Anar (American Mathematical Society (AMS), 2011-02-01)
In the present paper we introduce quantum measures as a concept of quantum functional analysis and develop the fractional space technique in the quantum (or local operator) space framework. We prove that each local operator algebra (or quantum *-algebra) has a fractional space realization. This approach allows us to formulate and prove a noncommutative Albrecht-Vasilescu extension theorem, which in turn solves the quantum moment problem.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Aksoylu, F. Celiker, and O. Kilicer, “Nonlocal operators with local boundary conditions in higher dimensions,”
ADVANCES IN COMPUTATIONAL MATHEMATICS
, pp. 453–492, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67242.