A strategy to enhance AGC performance of power systems that suffer inter-area oscillations and a case study for Turkish power system

Tanidir, O.
Cebeci, M. E.
Gencoglu, C.
Tor, O. B.
Sufficient fast secondary reserve and its adequate dynamic activation are the key factors in satisfying automatic generation control (AGC) performance of a power system. Dynamic activation of the secondary reserves should also not introduce any negative damping to inter-area oscillations. This study presents a strategy to enhance AGC performance of a power system considering these concerns. Objective function is minimizing the amount of fast secondary reserves to mitigate ancillary service cost. The constraints are; AGC performance indices should be acceptable and AGC parameter settings should be adequate for inter-area oscillation concerns. In order to facilitate dynamic simulations, it is proposed to utilize a representative single bus common frequency dynamic model (SBCFDM) of the power system. The proposed strategy is based on optimizing the AGC parameters only for the time horizon when the loads are fluctuating most. Adequacy of the optimized AGC parameters are checked only for the worst loading scenario from inter-area oscillations concern point of view. It is showed that dynamic allocation of the secondary reserves twice a day is sufficient for satisfactory results. The proposed strategy is verified by its application to Turkish power system which suffers significant amount of fluctuating loads and inter-area oscillations with ENTSO/E grid.


An Integration method over a moving window for exponential convergence in adaptive control without persistency of excitation
Yayla, Metehan; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
Adaptive control has great capabilities in control of uncertain systems to maintain a consistent and desired performance. Another control methodology concerning the uncertain systems is the robust control. It is well-known that the robust control has advantages of dealing with external disturbances, unmodeled dynamics, and quickly varying uncertain parameters. Nonetheless, robustness against these environmental, and parametric uncertainties degrades the tracking performance. Besides, adaptive control can to...
An Efficient Implementation of Online Model Predictive Control With Field Weakening Operation in Surface Mounted PMSM
Arpacik, Okan; Ankaralı, Mustafa Mert (2021-01-01)
Model-predictive-controller (MPC), one of the optimal control policies, has gained more attention in servo drive and other industrial applications in recent years due to evident control performance benefits compared to more classical control methods. However, an MPC algorithm solves a constrained optimization problem at each step that brings a substantial computational burden over classical control policies. This study focuses on improving the computational efficiency of an online MPC algorithm and then dem...
A New Model Predictive Torque Control Strategy with Reduced Set of Prediction Vectors
Şahin, İlker; Keysan, Ozan (2018-04-12)
Major drawback of finite control set model predictive control (FCS-MPC) is its high computational burden. This paper proposes a new optimal vector selection strategy that reduces the computational cost of FCS-MPC technique. Considering two-level voltage source inverters (2L-VSI) utilized as motor drives, proposed strategy reduces the number of active prediction vectors from six to three. Hence, cost function is evaluated only for four vectors (three active and one zero). Moreover, between the two possible z...
A simplified discrete-time implementation of FCS-MPC applied to an IM drive
ŞAHİN, İLKER; Keysan, Ozan (2019-01-01)
Model predictive control (MPC) has drawn significant attention from the power electronics research community in the last decade. Regarding the application of MPC in motor control, several studies have been conducted that include design and implementation of various predictive torque control techniques. In this study, MPC of an induction motor is implemented via TMDXIDDK379D, a motor drive development platform produced by Texas Instruments (TI). The main motivation is to show the engineers and researchers a ...
A programmable control unit for industrial applications
Güngör, Mustafa Kemal; Hızal, Mirzahan; Department of Electrical and Electronics Engineering (2003)
In this thesis, the automation of the long term and cyclic processes by using a programmable control unit is aimed. To achieve this goal, timing relays and various microcontrollers are investigated. PIC microcontroller is chosen to implement the control unit due to its advantages like high speed, Harvard and RISC architecture, low cost and flexibility for programming. Theory of the PIC microcontrollers is studied and a controller unit to be used in the mentioned processes is designed. Some features are adde...
Citation Formats
O. Tanidir, M. E. Cebeci, C. Gencoglu, and O. B. Tor, “A strategy to enhance AGC performance of power systems that suffer inter-area oscillations and a case study for Turkish power system,” INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, pp. 941–953, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67735.