A numerically stable algorithm for scattering from several circular cylinders including metamaterials with different boundary conditions

2018-01-01
SEVER, EMRAH
DİKMEN, FATİH
TUCHKİN, YURY ALEXANDEROVİCH
Sabah, Cumali
The analytically obtained algebraic equation systems for the TM/TE-z polarized monochromatic waves scattering from eccentrically layered circular cylinders are ill-conditioned for numerical calculations. Therefore, such ill conditioned systems must be regularized for reliable numerical results. Here, the steps of the regularization of the ill conditioned system obtained for the scattered field from a circular metamaterial cylinder includes three parallel circular cylinders: a dielectric, an impedance and a perfect electric conductor is explained. In the regularization procedure used here each circular boundary brings block(s) correspond to its electromagnetic property and the regularization procedure is done according to this block(s). For this end a system that consists of perfect electric conductor (PEC), impedance, dielectric, and metamaterial cylinders is discussed and thus the steps of a regularization procedure for a general system that has all the type of boundaries in terms of electromagnetics will be explained here. As a result, if a new boundary is included to the system then it is sufficient to locate the blocks related to this boundary suitably. (C) 2018 Elsevier GmbH. All rights reserved.

Suggestions

A robust algorithm for the solution of electromagnetic problems over a frequency interval via the Pade approximation
Kuzuoğlu, Mustafa (Wiley, 1999-03-20)
In this paper, we present an efficient and systematic algorithm for the solution of electromagnetic scattering and radiation problems over a wide frequency interval. The algorithm is based on the evaluation of the Pade approximant of the solution vector, constructed at a minimum number of expansion frequencies within the interval of interest. The bisection algorithm introduced in this paper is robust. It keeps the approximation error bounded by a predefined constant over the entire frequency band. (C) 1999 ...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Extension of forward-backward method with DFT-based acceleration algorithm for the efficient analysis of large periodic arrays with arbitrary boundaries
Aydın Çivi, Hatice Özlem; Chou, HT (Wiley, 2005-11-05)
An extension of the discrete Fourier transform (DFT)-based forward-backward algorithm is developed using the virtual-element approach to provide a fast and accurate analysis of electromagnetic radiation/scattering front electrically large, planar, periodic, finite (phased) arrays with arbitrary boundaries. Both the computational complexity and storage requirements of this approach are O(N-tot) (N-tot is the total number of unknowns). The numerical results for both printed and freestanding dipole array's wit...
The language of Einstein spoken by optical instruments
Baskal, S; Kim, YS (Pleiades Publishing Ltd, 2005-09-01)
The mathematics of Lorentz transformations, called the Lorentz group, continues to play an important role in optical sciences. It is the basic mathematical language for coherent and squeezed states. It is noted that the six-parameter Lorentz group can be represented by two-by-two matrices. Since the beam transfer matrices in ray optics are largely based on two-by-two matrices or ABCD matrices, the Lorentz group is bound to be the basic language for ray optics, including polarization optics, interferometers,...
Citation Formats
E. SEVER, F. DİKMEN, Y. A. TUCHKİN, and C. Sabah, “A numerically stable algorithm for scattering from several circular cylinders including metamaterials with different boundary conditions,” OPTIK, pp. 667–676, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67761.