A Wireless Vehicle-based mobile network infrastructure designed for smarter cities

Quer, Giorgio
Aktas, Tugcan
Librino, Federico
Javidi, Tara
Rao, Ramesh R.
The evolution of smart city services and applications requires a more efficient wireless infrastructure to provide the needed data rate to users in a high-density environment with high mobility, satisfying at the same time the request for high-connectivity and low-energy consumption. To address the challenges in this new network scenario, we propose to opportunistically rely on the increasing number of connected vehicles in densely populated urban areas. The idea is to support the macro base station (BS) with a secondary communication tier composed of a set of smart and connected vehicles that are in movement in the urban area. As a first step towards a comprehensive cost-benefit analysis of this architecture, this paper considers the case where these vehicles are equipped with femto-mobile access points (fmAPs) and constitute a mobile out-of-band relay infrastructure. We first study this network system with a continuous time model, in which three techniques to select an fmAP (if more than one is available) are proposed and the maximal feasible gain in the data rate is characterized as a function of the vehicle density, average vehicle speeds, handoff overhead cost, as well as physical layer parameters. We then introduce a time slotted model, in which we consider a more realistic communication channel, with an exponential path loss model, and we investigate the tradeoff between energy consumption and expected data rate, as a function of the system parameters. The analytical and simulation results, with both the continuous and time slotted models, provide a first benchmark characterizing this architecture and the definition of guidelines for its future realistic study and implementation.


A Cognitive Routing Protocol for Bio-Inspired Networking in the Internet of Nano-Things (IoNT)
Al-Turjman, Fadi (Springer Science and Business Media LLC, 2020-10-01)
In this paper, we propose a framework for data delivery in nano-scale networks, where numerous wireless sensors are distributed on a human body, small object, tiny plant root, etc. Our framework caters for green energy-efficient applications in the Internet of Nano Things (IoNT) where data is relayed via nano-routers from a multifarious nanonodes towards a gateway connected to a large-scale network such as the Internet. We consider the entire network energy while choosing the next hop for our routed packets...
Cognitive routing protocol for disaster-inspired Internet of Things
Ai-Turjman, Fadi (Elsevier BV, 2019-03-01)
In this paper, we propose a framework for data delivery in large-scale networks for disaster management, where numerous wireless sensors are distributed over city traffic-infrastructures, shopping-malls' parking areas, airports' facilities, etc. In general, our framework caters for energy-efficient applications in the Internet of Things (IoT) where data is propagated via relays from diverse sensor-nodes towards a gateway connected to a large-scale network such as the Internet. We consider the entire network...
A systematic approach to the integration of overlapping partitions in service-oriented data grids
Sunercan, H. Kevser; Alpdemir, M. Nedim; Çiçekli, Fehime Nihan (Elsevier BV, 2011-06-01)
This paper aims to provide a service-oriented data integration solution over data Grids for cases where distributed data sources are partitioned with overlapping sections of various proportions. This is an interesting variation which combines both replicated and partitioned data within the same data management framework. Thus, the data management infrastructure has to deal with specific challenges regarding the identification, access and aggregation of partitioned data with varying proportions of overlappin...
Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes
Erdemir, Ecenaz; Tuncer, Temel Engin (Elsevier BV, 2018-08-01)
In wireless sensor networks, node locations are required for many applications. Usually, anchors with known positions are employed for localization. Sensor positions can be estimated more efficiently by using mobile anchors (MAs). Finding the best MA trajectory is an important problem in this context. Various path planning algorithms are proposed to localize as many sensors as possible by following the shortest path with minimum number of anchors. In this paper, path planning algorithms for MA assisted loca...
5G-enabled devices and smart-spaces in social-IoT: An overview
Al-Turjrnan, Fadi (Elsevier BV, 2019-03-01)
The abundance of smartphones, with their growing capabilities potentiates applications in numerous domains. A typical smartphone nowadays is equipped with an array of embedded sensors (e.g., GPS, accelerometers, gyroscopes, RFID readers, cameras, and microphones) along with different communication interfaces (e.g. Cellular, WiFi, Bluetooth, etc.). Thus, a smartphone is a significant provider for sensory data that awaits the utilization in many critical applications. Primers of this vision have demonstrated ...
Citation Formats
G. Quer, T. Aktas, F. Librino, T. Javidi, and R. R. Rao, “A Wireless Vehicle-based mobile network infrastructure designed for smarter cities,” AD HOC NETWORKS, pp. 160–169, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67919.