Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Strain effects on the behavior of isolated and paired sulfur vacancy defects in monolayer MoS2
Download
index.pdf
Date
2017-01-17
Author
Sensoy, Mehmet Gokhan
Vinichenko, Dmitry
Chen, Wei
Friend, Cynthia M.
Kaxiras, Efthimios
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
141
views
0
downloads
Cite This
We investigate the behavior of sulfur vacancy defects, the most abundant type of intrinsic defect in monolayer MoS2, using first-principles calculations based on density functional theory. We consider the dependence of the isolated defect formation energy on the charge state and on uniaxial tensile and compressive strain up to 5%. We also consider the possibility of defect clustering by examining the formation energies of pairs of vacancies at various relative positions, and their dependence on charge state and strain. We find that there is no driving force for vacancy clustering, independent of strain in the material. The barrier for diffusion of S vacancies is larger than 1.9 eV in both charged and neutral states regardless of the presence of other nearby vacancies. We conclude that the formation of extended defects from S vacancies in planar monolayer MoS2 is hindered both thermodynamically and kinetically.
Subject Keywords
Electronic-Properties
,
Integrated-Circuits
,
Photoluminescence
,
Evolution
URI
https://hdl.handle.net/11511/68066
Journal
PHYSICAL REVIEW B
DOI
https://doi.org/10.1103/physrevb.95.014106
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Strain gradient crystal plasticity: Intergranular microstructure formation
Özdemir, İzzet; Yalçınkaya, Tuncay (Springer International Publishing, 2016-01-01)
This chapter addresses the formation and evolution of inhomogeneous plastic deformation field between grains in polycrystalline metals by focusing on continuum scale modeling of dislocation-grain boundary interactions within a strain gradient crystal plasticity (SGCP) framework. Thermodynamically consistent extension of a particular strain gradient plasticity model, addressed previously (see also, e.g., Yalcinkaya et al, J Mech Phys Solids 59:1-17, 2011), is presented which incorporates the effect of grain ...
Mass dispersion in transfer reactions with a stochastic mean-field theory
Washiyama, Kouhei; Ayik, Sakir; Lacroix, Denis (2009-09-01)
Nucleon transfer in symmetric heavy-ion reactions at energies below the Coulomb barrier is investigated in the framework of a microscopic stochastic mean-field theory. Although mean field alone is known to significantly underpredict the dispersion of the fragment mass distribution, a considerable enhancement of the dispersion is obtained in the stochastic mean-field theory. The variance of the fragment mass distribution deduced from the stochastic theory scales with the number of exchanged nucleons. Therefo...
Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study
Kurban, Mustafa; Erkoç, Şakir (2016-09-01)
Structural and mechanical properties of ternary CdZnTe nanowires have been investigated by performing molecular dynamics simulations using an atomistic potential. The simulation procedures are carried out as uniaxial stretching and compression at 1 K and 300 K. The results demonstrate that the mechanical properties of CdZnTe ternary nanowires show significantly a dependence on size and temperature under uniaxial stretching and compression.
Density functional theory study on the structural properties and energetics of Zn(m)Te(n) microclusters
Pekoez, Rengin; Erkoç, Şakir (Elsevier BV, 2008-08-01)
Density functional theory calculations with B3LYP exchange-correlation functional using CEP-121G basis set have been carried out in order to elucidate the structural properties and energetics of neutral zinc telluride clusters, Zn(m)Te(n)(m + n <= 6), in their ground states. The geometric structures, binding energies, vibrational frequencies and infrared intensities, Mulliken charges on atoms, HOMO and LUMO energies, the most possible dissociation channels and their corresponding energies for the clusters h...
Stress Scaling Factors for Seismic Soil Liquefaction Engineering Problems: A Performance-Based Approach
Çetin, Kemal Önder; Bilge, Habib Tolga (2013-06-19)
Most of the widely used seismic soil liquefaction triggering methods propose cyclic resistance ratio (CRR) values valid at the reference normal effective stress (sigma(v,0)') of one atmosphere and zero static shear stress (tau(st,0)) states. Then, a series of correction factors are applied on this reference CRR, for the purpose of assessing the variability due to normal effective and static shear stress states (i.e. K-sigma and K-alpha corrections) acting on the horizontal plane. In the literature, a number...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. G. Sensoy, D. Vinichenko, W. Chen, C. M. Friend, and E. Kaxiras, “Strain effects on the behavior of isolated and paired sulfur vacancy defects in monolayer MoS2,”
PHYSICAL REVIEW B
, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68066.