Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Novel electrolytes for solid oxide fuel cells with improved mechanical properties
Date
2012-09-01
Author
TİMURKUTLUK, BORA
Celik, Selahattin
Timurkutluk, Cigdem
Mat, Mahmut D.
Kaplan, Yuksel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
139
views
0
downloads
Cite This
The improvement of the mechanical properties of novel structured electrolytes with triangular cut off geometry in the active region is presented by filleting the tips of triangles. The effect of fillet radius on the bending strength of the yttria stabilized zirconia electrolyte was investigated with a commercial finite element code implementing the calculated Weibull stress through the experimental stress strain curve determined via tensile tests. The model was verified with the experimental three point bending test results for the electrolyte with unfilleted triangular cut off patterns. Ten different fillet radii ranging from 0.05 mm to 0.5 mm were considered in the simulations. The fracture displacement was found to increase with increasing fillet radius as expected. Since the electrolyte with fillet radius of 0.5 mm was found to show the highest flexural strength, single cell based on this electrolyte was fabricated and the cell performance was measured. It was found that the strength of the novel electrolyte with partly reduced thickness can be increased by 26.2% with sacrificing only 10.2% decrease in the performance. Since the final cell still showed 22.2% higher peak performance than the standard electrolyte supported cell, 10.2% decrease in the cell performance compared to the cell having unfilleted triangular cut off patterns is acceptable. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Solid Oxide Fuel Cell
,
Yttria Stabilized Zirconia
,
Novel Electrolyte Design
,
Finite Element Modeling
,
Tensile And Bending Strength
URI
https://hdl.handle.net/11511/68123
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2012.06.103
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Effects of electrolyte pattern on mechanical and electrochemical properties of solid oxide fuel cells
TİMURKUTLUK, BORA; Celik, Selahattin; Toros, Serkan; Timurkutluk, Cigdem; Mat, Mahmut D.; Kaplan, Yuksel (2012-09-01)
In order to enhance the electrochemical performance and reduce the operation temperature of a conventional electrolyte supported solid oxide fuel cell (SOFC), a three layered electrolyte with various geometry is designed and fabricated. Novel three layered electrolytes comprise a dense and thin scandia alumina stabilized zirconia (ScAlSZ) electrolyte layer sandwiched between two hallow ScAlSZ electrolyte layers each having the same thickness as the support but machined into a filter like architecture in the...
Novel structured electrolytes for solid oxide fuel cells
TİMURKUTLUK, BORA; Celik, Selahattin; Timurkutluk, Cigdem; Mat, Mahmut D.; Kaplan, Yuksel (2012-09-01)
Novel grate type electrolytes are designed and fabricated to improve the cell performance and to lower the operation temperature of intermediate temperature electrolyte supported solid oxide fuel cells based on scandium and ceria stabilized zirconia by partly reducing the electrolyte thickness. The characteristics of three different small size cells (11.62 cm(2) active area) having various electrolyte designs are investigated. A standard electrolyte supported cell is also produced as a base case for compari...
Modeling of the nonlinear behavior of steel framed structures with semi rigid connections
Sarıtaş, Afşin; Özel, Halil Fırat (null; 2015-07-21)
A mixed formulation frame finite element with internal semi-rigid connections is presented for the nonlinear analysis of steel structures. Proposed element provides accurate responses for spread of inelasticity along element length by monitoring the nonlinear responses of several crosssections, where spread of inelasticity over each section is captured with fiber discretization. Each material point on the section considers inelastic coupling between normal stress and shear stress. The formulation of the ele...
EVALUATION OF TRANSVERSE SHEAR MODULI OF COMPOSITE SANDWICH BEAMS THROUGH THREE-POINT BENDING TESTS
Şener, Özgün; ATALAY, OĞUZ; ATASOY, MERT; Kayran, Altan (2018-11-15)
Transverse shear moduli of the sandwich core and flexural stiffness of all-composite sandwich constructions are determined with three-point beam bending tests, and compared with the analytical and finite element analysis solutions. Additionally, Digital Image Correlation (DIC) system is employed to validate the experimental results by monitoring the displacements. The effect of orientation of the composite core material with respect to the beam axis on the shear modulus of the core material itself, flexural...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. TİMURKUTLUK, S. Celik, C. Timurkutluk, M. D. Mat, and Y. Kaplan, “Novel electrolytes for solid oxide fuel cells with improved mechanical properties,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 13499–13509, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68123.