Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications
Date
2015-12-01
Author
ÜNAL, EMİN
Dincer, Furkan
TETİK, ERKAN
KARAASLAN, MUHARREM
Bakir, Mehmet
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
217
views
0
downloads
Cite This
We present the design, characterization, theoretical and experimental verification of a tunable perfect metamaterial absorber (MA) based electromagnetic (EM) energy harvesting and sensor application. We have used the golden ratio while determining the dimensions allowing a simple configuration and an easy fabrication for the proposed structure. We have examined and analyzed the perfect absorption (both numerically and experimentally) and EM energy harvesting (numerically) behaviors of the proposed structure in order to verify and show the characteristics of the model. It is shown that 99.9 % maximum absorption rate is achieved at 6.78 GHz, and MA structure can be used as an EM energy collector. In order to support the numerical study, an experimental study is realized. We have then developed a sensor application of the proposed MA structure and observed the effects of the harvesting system. Perfect MA sensor based EM energy harvesting system is successfully achieved.
Subject Keywords
Polarization
,
Resonators
,
Cloaking
,
Waves
,
Ring
URI
https://hdl.handle.net/11511/68260
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
DOI
https://doi.org/10.1007/s10854-015-3642-7
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Broadband THz Modulators Based on Multilayer Graphene on PVC
KAYA, Emine; Kakenov, Nurbek; Kocabas, Coskun; Altan, Hakan; Esentürk, Okan (2016-09-30)
In this study we present the direct terahertz timedomain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V.We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The obse...
Adsorption of RuSex (x=1-5) cluster on Se-doped graphene: First principle calculations
AKTÜRK, OLCAY ÜZENGİ; Tomak, Mehmet (2015-08-30)
We have investigated the adsorption of RuSex (x =1-5) cluster on Se-doped graphene. The change of the adsorption energy with the number of Se atoms and magnetization values are investigated. Electronic properties of adsorption of RuSex (x =1-5) cluster on Se-doped graphene are investigated. The highest adsorption energy belongs to RuSe adsorbate. The biggest magnetization value belongs to RuSe2 adsorbate. This adsorbate makes the substrate half metallic. This property is important in electronic device appli...
Tunable Graphene Integrated Perfect Metamaterial Absorber for Energy Harvesting and Visible Light Communication
Sabah, Cumali (2018-02-09)
Tunable graphene integrated metamaterial absorber is proposed for energy harvesting and visible light communication. The structure provides unity absorption in the visible spectrum in which it can be used perfect absorber for energy harvesting. In addition, it also provides tunability because of the graphene conductivity to be used as photoconductive or thermal switch for visible light communication.
Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors
Kanbur, Yasin; Irimia-Vladu, Mihai; Glowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Guenther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; ERTEN ELA, ŞULE; Schwoediauer, Reinhard; Sitter, Helmut; Kucukyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar (2012-05-01)
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C-60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm(2)/Vs. Devices with pentacene showed a mobility of 0.16 cm(2)/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of similar to...
Tunable frequency microstrip antennas by rf-mems technology
Erdil, Emre; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2005)
This thesis presents the design, fabrication, and measurement of tunable frequency microstrip antennas using RF MEMS (Microelectromechanical Systems) technology. The integration of RF MEMS components with radiators enable to implement tunable systems due to the adjustable characteristics of RF MEMS components. In the frame of this thesis, different types of structures have been investigated and designed. The first structure consists of a microstrip patch antenna which is loaded with a microstrip stub whose ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. ÜNAL, F. Dincer, E. TETİK, M. KARAASLAN, M. Bakir, and C. Sabah, “Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications,”
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
, pp. 9735–9740, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68260.