Modeling and design of a non-thermal plasma reactor for CO2 dissociation

Download
2017-1
Ahmed, Humayun
The requirement of energy constantly increases with time, and one of the major sources of energy is fossil fuels which release carbon dioxide upon combustion. Environmentally, CO2 is a greenhouse gas which has had a tremendous impact on the Earth’s climate over the last few decades and the urges serious mitigation methods for the long-term sustainability of the Earth’s climate and ecosystem. One mitigation method is the dissociation of CO2 to produce synthesis gas which can be used to produce alternative hydrocarbon fuels. There have been studies investigating the use of plasma reactors for synthesis gas production but experimentation has proven to be resource and time consuming. Hence, this study focuses on modeling the dissociation of carbon dioxide in non-thermal plasma reactors via a one-dimensional fluid approximation and a zerodimensional kinetics analysis. A sensitivity analysis on the results is conducted by using different collision cross-section data for the electron impact dissociation of CO2. The results show the spatial distribution of electrons depends upon electron attachment, ionization and electronic excitation of CO2 primarily, and addition of carrier gases such as Argon and Xenon and their effects on the shape of distribution.

Suggestions

Simulating CO2 sequestration in a depleted gas reservoir
Özkılıç, Öke İsmet; Gümrah, Fevzi; Department of Petroleum and Natural Gas Engineering (2005)
Carbon dioxide is one of the greenhouse gases which have strong impacts on the environment and its amount in the atmosphere is far beyond to be ignored. Carbon dioxide levels are projected to be reduced by sequestering it directly to the underground. High amounts of carbon dioxide can be safely stored in underground media for very long time periods. Storage in depleted gas reservoirs provides an option for sequestering carbon dioxide. In 2002, production of Kuzey Marmara gas reservoir has been stopped due t...
Modelling of carbon sink capacity of the Black Sea
Cengiz, Yelis; Yılmaz, Ayşen; Yücel, İsmail; Department of Earth System Science (2016)
The concentration of carbon dioxide in the atmosphere is constantly increasing due to human activities and results in global warming. Since Industrial Revolution 30 and 25 percentages of the anthropogenic atmospheric carbon dioxide are taken up by the forests and by the oceans respectively. Carbon dioxide is rising faster than biosphere can tolerate and the rest of the carbon dioxide which can not be hold, continues to accumulate and causes further heating of the atmosphere. The carbon sink capacity of the ...
Recent advances in heterogeneous catalysts for the effective electroreduction of carbon dioxide to carbon monoxide
Eren, Enis Oğuzhan; Özkar, Saim (2021-09-15)
The electrochemical conversion of carbon dioxide into low carbon fuels is a very convenient way of reducing the concentration of atmospheric CO2, which is the main cause of global warming. CO is known to be the most common and profitable product of CO2 reduction due to its low energy requirement and reaction simplicity. However, the viability of the process still depends on affordable and efficient catalysts. In this review, an overview is provided on recent advances in developing highly efficient heterogen...
Numerical simulations of gas production from Class 1 hydrate and Class 3 hydrate in the Nile Delta of the Mediterranean Sea
MEREY, ŞÜKRÜ; Longinos, Sotirios Nik (Elsevier BV, 2018-04-01)
Gas hydrate reservoirs are considered as near-future energy resources in the world. As well as the many places in the world, there is also gas hydrate potential in the Mediterranean Sea. In this study, by using the literature data, it was aimed to understand whether the Mediterranean Sea includes necessary parameters for producible gas hydrate reservoirs. It was shown that the Mediterranean Sea contains all of these parameters (source gas, appropriate pressure and temperature, coarse sand potential, etc.). ...
Modeling and financial analysis of a solar-biomass hybrid power plant in Turkey
Özdemir, Merve; Yozgatlıgil, Ahmet; Department of Mechanical Engineering (2017)
Solar thermal and biomass combustion systems can be hybridized via a Rankine cycle to have a continuous electricity generation and lower CO2 footprint. Disadvantages of these two renewable technologies can be overcome by hybridization. In this work; we develop a simulation model for Rankine cycle based, solar-biomass hybrid power plants using the ASPEN PLUS software. Solar parabolic collectors and biomass combustion are arranged in parallel to produce steam for power generation. Using the simulation model; ...
Citation Formats
H. Ahmed, “Modeling and design of a non-thermal plasma reactor for CO2 dissociation,” M.S. - Master of Science, Middle East Technical University, 2017.