Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Liftable homeomorphisms of cyclic and rank two finite abelian branched covers over the real projective plane
Date
2021-02-01
Author
Atalan, Ferihe
Medetogullari, Elif
Ozan, Yıldıray
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
374
views
0
downloads
Cite This
© 2020 Elsevier B.V.In this note, we investigate the property for regular branched finite abelian covers of the real projective plane, where each homeomorphism of the base (preserving the branch locus) lifts to a homeomorphism of the covering surface.
Subject Keywords
Geometry and Topology
URI
https://hdl.handle.net/11511/69843
Journal
Topology and its Applications
DOI
https://doi.org/10.1016/j.topol.2020.107479
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Finite rigid sets in curve complexes of nonorientable surfaces
Ilbira, Sabahattin; Korkmaz, Mustafa (Springer Science and Business Media LLC, 2020-06-01)
A rigid set in a curve complex of a surface is a subcomplex such that every locally injective simplicial map from the set into the curve complex is induced by a homeomorphism of the surface. In this paper, we find finite rigid sets in the curve complexes of connected nonorientable surfaces of genus g with n holes for g + n not equal 4.
On endomorphisms of surface mapping class groups
Korkmaz, Mustafa (Elsevier BV, 2001-05-01)
In this paper, we prove that every endomorphism of the mapping class group of an orientable surface onto a subgroup of finite index is in fact an automorphism.
Equivariant cross sections of complex Stiefel manifolds
Onder, T (Elsevier BV, 2001-01-16)
Let G be a finite group and let M be a unitary representation space of G. A solution to the existence problem of G-equivariant cross sections of the complex Stiefel manifold W-k(M) of unitary k-frames over the unit sphere S(M) is given under mild restrictions on G and on fixed point sets. In the case G is an even ordered group, some sufficient conditions for the existence of G-equivariant real frame fields on spheres with complementary G-equivariant complex structures are also obtained, improving earlier re...
On homotopy groups of real algebraic varieties and their complexifications
Ozan, Yıldıray (Springer Science and Business Media LLC, 2004-10-01)
Let X-0 be a topological component of a nonsingular real algebraic variety and i : X --> X-C is a nonsingular projective complexification of X. In this paper, we will study the homomorphism on homotopy groups induced by the inclusion map i: X-0 --> X-C and obtain several results using rational homotopy theory and other standard tools of homotopy theory.
An obstruction to the existence of real projective structures
Coban, Hatice (Elsevier BV, 2019-09-15)
In this short note, we give an obstruction to obtain examples of higher dimensional manifolds with infinite fundamental groups, including the infinite cyclic group Z, admitting no real projective structure.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Atalan, E. Medetogullari, and Y. Ozan, “Liftable homeomorphisms of cyclic and rank two finite abelian branched covers over the real projective plane,”
Topology and its Applications
, pp. 0–0, 2021, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69843.