Exploring the water mobility in gelatin based soft candies by means of Fast Field Cycling (FFC) Nuclear Magnetic Resonance relaxometry

2021-04-01
Pocan, Pelin
İlhan, Esmanur
Florek–Wojciechowska, Małgorzata
Masiewicz, Elżbieta
Kruk, Danuta
Öztop, Halil Mecit
© 2020 Elsevier Ltd1H spin-lattice relaxation experiments for gelatin-based candies prepared by different amounts of D-allulose have been performed in the frequency range of 4 kHz–40 MHz. In addition, physical properties such as moisture content and hardness were also measured. Analysis of NMR dispersion profiles showed the presence of two fractions of water: confined and free-water. The relaxation data have been associated with parameters characterizing translation diffusion and rotation of the confined-water molecules and dynamics of the free-water fraction. The translation dynamics has turned out to be about three orders of magnitude slower compared to bulk water; the time scale of the rotational dynamics is similar to that of translation diffusion. Moreover, quantitative analysis of the relaxation data has provided a unique parameter, the number of water molecules undergoing translation dynamics within the confined-water fraction per unit volume. On this basis, the influence of D-allulose on the mechanisms of water motion has been discussed.
Journal of Food Engineering

Suggestions

Monitoring the effects of divalent ions (Mn+2 and Ca+2) in heat-set whey protein gels
Öztop, Halil Mecit; MCCARTHY, Michael J.; ROSENBERG, Moshe (Elsevier BV, 2014-04-01)
Exploring the effects of cations in whey protein-based gels (WPG) is of importance when these gels are used for controlled release applications in food systems. The objective of this study was to evaluate both water uptake and cation release from heat-set WPGs. Magnetic Resonance Imaging and NMR relaxometry were employed to study the uptake and release. A non-paramagnetic (Ca+2) and a paramagnetic cation (Mn+2) were incorporated into the WPG as model divalent cations. Cylindrical pieces of WPGs with mangane...
Visualisation of cakes differing in oil content with magnetic resonance imaging
Kırtıl, Emrah; Aydogdu, AYÇA; Bulut, Elif Yildiz; Tatar, Betul Cilek; Öztop, Halil Mecit (Informa UK Limited, 2017-01-01)
Magnetic resonance imaging (MRI) is a non-invasive imaging technique that can visualise samples' interior by using the signal coming from mobile protons. The aim of this study was to examine the effects of oil content and peanut/raisin addition on cake quality and to illustrate the power of MRI in analysis of moisture and oil distribution. For this purpose, MR images were acquired with a spin echo sequence and relaxation times T-1 and T-2, and moisture content and firmness of cakes were measured. High oil c...
Monitoring changes in feta cheese during brining by magnetic resonance imaging and NMR relaxometry
ALTAN, Aylin; Öztop, Halil Mecit; MCCARTHY, Kathryn L.; MCCARTHY, Michael J. (Elsevier BV, 2011-12-01)
Magnetic resonance imaging (MRI) and NMR relaxometry were used to monitor changes in feta cheese during 169 h of brining at 4.8%, 13.0% and 23.0% salt solutions. Image and relaxation data were acquired to study salt uptake and water loss due to dehydration of cheese during brining. Saturation recovery and Carr-Purcell-Meiboom-Gill (CPMG) sequences were used to determine the longitudinal relaxation (T-1) and the transverse relaxation (T-2) times, respectively. Signal intensities of T-2 weighted images decrea...
Recovery of strawberry aroma compounds by pervaporation
Isci, A; Şahin, Serpil; Şümnü, Servet Gülüm (Elsevier BV, 2006-07-01)
The main objective of this study was to determine the effects of feed temperature (30, 40, 50 degrees C), concentration (50, 100, 150 ppm), composition (different strawberry model solutions) and permeate pressure (4, 8 mbar) on recovery of strawberry aroma compounds by pervaporation. Pervaporation was performed using a hydrophobic membrane, PERVAP 1070 (PDMS). As the feed temperature increased or downstream pressure decreased, the mass flux and selectivity increased in pervaporation of methyl butyrate (MTB)...
Monitoring the rheological properties and solid content of selected food materials contained in cylindrical cans using audio frequency sound waves
Mert, Behiç (Elsevier BV, 2007-03-01)
The attenuation of the sound energy produced by a liquid contained in a cylindrical shaped container depends on the liquid's viscosity, the sound frequency, and the tube wall thickness. By measuring the acoustic impedance caused by the interaction of sound waves moving in a system composed of a liquid material in a cylindrical shaped container information about the viscosity of the liquid material was obtained. Impedance measurements can also provide sound velocity in the liquid medium as another important ...
Citation Formats
P. Pocan, E. İlhan, M. Florek–Wojciechowska, E. Masiewicz, D. Kruk, and H. M. Öztop, “Exploring the water mobility in gelatin based soft candies by means of Fast Field Cycling (FFC) Nuclear Magnetic Resonance relaxometry,” Journal of Food Engineering, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70203.