Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fault Tolerant Attitude Estimation for Small Satellites
Date
2020-12-01
Author
Söken, Halil Ersin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
594
views
0
downloads
Cite This
Small satellites use commercial off-the-shelf sensors and actuators for attitude determination and control (ADC) to reduce the cost. These sensors and actuators are usually not as robust as the available, more expensive, space-proven equipment. As a result, the ADC system of small satellites is more vulnerable to any fault compared to a system for larger competitors. This book aims to present useful solutions for fault tolerance in ADC systems of small satellites. The contents of the book can be divided into two categories: fault tolerant attitude filtering algorithms for small satellites and sensor calibration methods to compensate the sensor errors. MATLAB® will be used to demonstrate simulations. Presents fault tolerant attitude estimation algorithms for small satellites with an emphasis on algorithms’ practicability and applicability Incorporates fundamental knowledge about the attitude determination methods at large Discusses comprehensive information about attitude sensors for small satellites Reviews calibration algorithms for small satellite magnetometers with simulated examples Supports theory with MATLAB simulation results which can be easily understood by individuals without a comprehensive background in this field Covers up-to-date discussions for small satellite attitude systems design
URI
https://www.taylorfrancis.com/books/fault-tolerant-attitude-estimation-small-satellites-chingiz-hajiyev-halil-ersin-soken/10.1201/9781351248839
https://hdl.handle.net/11511/70369
Collections
Department of Aerospace Engineering, Book / Book chapter
Suggestions
OpenMETU
Core
Real-Time Attitude Independent Calibration of Spinning Spacecraft Magnetometers Using Quasi-Measurements
Cetin, Mustafa Efe; Söken, Halil Ersin; Sakai, Shin-ichiro (2022-11-01)
Magnetometers are essential sensors for attitude estimation in small spacecraft due to their robust, inexpensive, and lightweight characteristics. However, the raw measurements contain sensor errors. These errors degrade the attitude estimation accuracy. This study proposes a complete real-time attitude-independent magnetometer calibration algorithm for spinning spacecraft. The recursive algorithm aims to estimate the full error state, bias, scale factor, and non-orthogonality corrections in real-time and w...
Magnetometer Calibration for Advanced Small Satellite Missions
Söken, Halil Ersin (2015-07-10)
Implementation of magnetometers as attitude sensors onboard the small satellites brings with numerous challenges most of which caused by locating the sensors closely with other subsystems. One of these challenges is estimation and compensation of soft iron error that deteriorates the magnetometer measurements. This is a type of error formed by the ferromagnetic materials (or soft irons) onboard the satellite. Ferromagnetic materials are materials that can be magnetized by an external magnetic field and rema...
Radiation Testing of Commercial Rechargeable Lithium Polymer Batteries for Small Satellite Applications
Muçogllava, Brunilda; Karim Hashmani, Raheem; Çakmakoğlu, Selman; Demirköz, Melahat Bilge (2022-11-01)
Commercial off-the-shelf (COTS) electrical components are becoming of interest for small satellite applications due to their accessibility, good performance, and low cost. We quantify the performance of Lithium Polymer (LiPo) COTS batteries under irradiation to assess their reliability. LiPo battery cells with LiCoO2 cathodes, nominal voltages of 3.7 V, and rated capacities of 6000 mAh are irradiated with a 30 MeV proton beam from the Middle East Technical University Defocusing Beamline, which delivers a ma...
Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles
Gökçe, Fatih; Üçoluk, Göktürk; Şahin, Erol; Kalkan, Sinan (MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2015-9)
Detection and distance estimation of micro unmanned aerial vehicles (mUAVs) is crucial for (i) the detection of intruder mUAVs in protected environments; (ii) sense and avoid purposes on mUAVs or on other aerial vehicles and (iii) multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment...
Dynamic modelling and control of a gimballed airborne antenna platform with mass unbalance and friction
Şeref, Tuğçe; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2018)
Inertial stabilized gimballed systems are widely-used in many applications to achieve a high precision positioning. Airborne antennas pointing target as a part of the satellite communication may be examples of such systems. This thesis presents the dynamic modelling and control of a two axes gimballed airborne antenna platform. First, reference frames and the transformation matrices are defined to build up the motion of the antenna and kinematic equations of each gimbal are derived. Next, the dynamic equati...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Söken,
Fault Tolerant Attitude Estimation for Small Satellites
. 2020.