Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Flow Field Investigation of Rib Roughened Serpentine channel
Date
2016-01-01
Author
Yasa, Tolga
Kavas, İsa
Yılmaztürk, Sefa
Kurtuluş, Dilek Funda
Metadata
Show full item record
Item Usage Stats
180
views
0
downloads
Cite This
This paper presents numerical flow field and heat transfer analysis of a channel consisting of upstream and downstream channels and a 180° bend. Turbulators (rib) with a square cross-section are placed in the straight part of the channels in order to enhance the heat transfer while flow enters to the model at fully developed conditions at Reynolds numbers of 20000. A constant heat flux boundary condition is provided from the bottom wall of the model. Numerical simulations are performed by a commercial solver using realizable k-ε turbulence model with enhanced wall treatment. The flow field development and evaluation of pressure drop accounted by each rib are analyzed along the channel. The effects of ribs to the flow field are characterized by wall shear distribution. The effect of u-bend on the downstream flow field is investigated.
Subject Keywords
Aerodynamic
,
Rib-roughened channel
,
180° bend
,
Computational fluid dynamics
URI
http://www.springer.com/us/book/9783319341798
https://hdl.handle.net/11511/71521
Relation
Sustainable Aviation Energy and Environmental Issues
Collections
Department of Aerospace Engineering, Book / Book chapter
Suggestions
OpenMETU
Core
Flow Field Investigation of Rib Roughened Serpentine channel
Yasa, Tolga; Kavas, İsa; Yılmaztürk, Sefa; Kurtuluş, Dilek Funda (2015-06-03)
This paper presents numerical flow field and heat transfer analysis of a channel consisting of upstream and downstream channels and a 180° bend. Turbulators (rib) with a square cross-section are placed in the straight part of the channels in order to enhance the heat transfer while flow enters to the model at fully developed conditions at Reynolds numbers of 20000. A constant heat flux boundary condition is provided from the bottom wall of the model. Numerical simulations are performed by a commercial solve...
Flow investigation in a channel reactor using chemically reacting boundary layer equations
Kenar, Doğu Hazar; Özyörük, Yusuf; Department of Aerospace Engineering (2023-1-13)
In this study, an algorithm for the solution of chemically reacting flows in a channel reactor is developed by using boundary layer equations. The governing flow equations are simplified under certain assumptions with the application of similarity transformation. As a consequence of simplification, the characteristics of flow equations are changed to parabolic partial differential equations (PDE). Parabolic PDEs can be solved by numerical techniques initially designed for ordinary differential equations (OD...
Flow Characterization of Viscoelastic Fluids around Square Obstacle
Tezel, Guler Bengusu; YAPICI, Kerim; Uludağ, Yusuf (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
This study focuses on the computational implementation of structured non-uniform finite volume method for the 2-D laminar flow of viscoelastic fluid past a square section of cylinder in a confined channel with a blockage ratio 1/4 for Re = 10(-)(4), 5, 10 and 20. Oldroyd-B model (constant viscosity with elasticity) and the PTT model (shear-thinning with elasticity) are the constitutive models considered. In this study effects of the elasticity and inertia on the drag coefficients and stress fields around th...
Flow measurement in open channels by combined use of free surface PİV and CFD
Gharahjeh, Siamak; Aydın, İsmail; Department of Civil Engineering (2016)
Stream discharge measurement in open channels is of great importance in hydraulic engineering. For many years, classical devices such as propellers, current meters and weirs have been used for this purpose. In recent times, non-intrusive methods such as PIV (Particle Image Velocimetry) and PTV (Particle Tracking Velocimetry) have been very popular as they are more practical and convenient to automatically collect water free surface velocity which is further analyzed for discharge measurement. Image processi...
Improving flow structure and natural convection within fin spacings of plate fin heat sinks
Özet, Mehmet Erdem; Tarı, İlker; Department of Mechanical Engineering (2015)
The main objectives of this thesis are to numerically investigate the previously observed recirculation zones and longitudinal vortices that occur in low fin height plate finned horizontal heat sinks and to improve the flow structures and heat transfer in these zones using various approaches with the help of simulations performed using commercially available CFD software. The approaches used for improvements are replacing the outer most fins with higher ones, introducing gaps on the length of the fins in va...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Yasa, İ. Kavas, S. Yılmaztürk, and D. F. Kurtuluş,
Flow Field Investigation of Rib Roughened Serpentine channel
. 2016, p. 362.