Computational Modeling of Drying Shrinkage in Early-Age Concrete

2019-10-10
Ghasabeh, Mehran
Göktepe, Serdar
This contribution is concerned with the computational modeling of durability problems related to drying shrinkage. The associated formulations are conducted by developing a coupled constitutive modeling approach, which is furnished by the robust computational tools within the framework of poroviscoelasticity. In contrast to the existing studies, we employ a physically motivated technique where the pore pressure is obtained as a function of the water content that is determined using sorption‐desorption equations for a given value of the local relative humidity. Therefore, the proposed model accounts for the hygro‐chemo‐mechanical cross coupling effects between the shrinkage‐induced strain development due to the pressure evolution through humidity variations and the stress concentrations in hardening and hardened viscoelastic concrete. The comparison of the numerical examples with experiments demonstrates excellent predictive capacity of the proposed model.
GAMM Annual Meeting (18 - 22 Şubat 2019)

Suggestions

Computational Modeling of Shrinkage-Induced Cracking in Concrete
Ghasabeh, Mehran; Göktepe, Serdar (null; 2019-09-09)
This contribution is concerned with the computational modeling of durability problems related to drying shrinkage. The associated formulations are conducted by developing a coupled constitutive modeling approach, which is furnished by the robust computational tools within the framework of poroviscoelasticity. In contrast to the existing studies, we employ a physically motivated technique where the pore pressure is obtained as a function of the water content that is determined using sorption‐desorption equat...
Computational modeling of thermal and shrinkage-induced cracking in concrete
Ghasabeh, Mehran; Göktepe, Serdar; Yaman, İsmail Özgür; Department of Civil Engineering (2021-3-3)
This work is concerned with the computational modeling of thermal and shrinkage-induced cracking in concrete. Thermal and hygral gradients develop within concrete structures of varying sizes and aspect ratios due to the intrinsic physicochemical phenomena accompanied by adverse environmental effects. These spatio-temporal gradients invariably result in uneven volumetric deformations that can cause stress concentrations when the concrete is sufficiently rigid. Then, when the gained tensile strength is lower ...
Computational Methods for Inclined Cracks in Orthotropic Functionally Graded Materials Under Thermal Stresses
Dağ, Serkan; TOPAL, SERRA (2013-10-03)
This article sets forth two different computational methods developed to evaluate fracture parameters for inclined cracks lying in orthotropic functionally graded materials, that are under the effect of thermal stresses. The first method is based on the J(k)-integral, whereas the second entails the use of the J(1)-integral and the asymptotic displacement fields. The procedures introduced are implemented by means of the finite element method and integrated into a general purpose finite element analysis softw...
Analysis of fiber reinforced composite vessel under hygrothermal loading
Sayman, Sümeyra; Parnas, Kemal Levend; Department of Mechanical Engineering (2003)
The aim of this study is to develop an explicit analytical formulation based on the anisotropic elasticity theory that determines the behavior of fiber reinforced composite vessel under hygrothermal loading. The loading is studied for three cases separately, which are plane strain case, free ends and pressure vessel cases. For free-end and pressure vessel cases, the vessel is free to expand, on the other hand for plane strain case, the vessel is prevented to expand. Throughout the study, constant, linear an...
Construction of phase diagrams to estimate phase transitions at high pressures: A critical point at the solid liquid transition for benzene
Ibrahimoglu, Beycan; Üner, Deniz; Veziroglu, Ayfer; Karakaya, Fuat; Ibrahimoglu, Beycan (2021-04-01)
Phase diagrams are an integral part of the estimation of material properties in the case of high temperature and pressure. The pressure-temperature (P-T) phase diagram is used to determine the state of aggregation (solid, liquid, gaseous) of a substance under given conditions. This article presents a method to reveal new states in the phase diagram, including the possibility of the plasma state. Using the empirical data of benzene, a critical pressure beyond solid-liquid equilibrium was estimated. It is hig...
Citation Formats
M. Ghasabeh and S. Göktepe, “Computational Modeling of Drying Shrinkage in Early-Age Concrete,” 2019, vol. 19, p. 1, Accessed: 00, 2021. [Online]. Available: https://doi.org/10.1002/pamm.201900415.