Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Construction of phase diagrams to estimate phase transitions at high pressures: A critical point at the solid liquid transition for benzene
Date
2021-04-01
Author
Ibrahimoglu, Beycan
Üner, Deniz
Veziroglu, Ayfer
Karakaya, Fuat
Ibrahimoglu, Beycan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
319
views
0
downloads
Cite This
Phase diagrams are an integral part of the estimation of material properties in the case of high temperature and pressure. The pressure-temperature (P-T) phase diagram is used to determine the state of aggregation (solid, liquid, gaseous) of a substance under given conditions. This article presents a method to reveal new states in the phase diagram, including the possibility of the plasma state. Using the empirical data of benzene, a critical pressure beyond solid-liquid equilibrium was estimated. It is highly probable that beyond these pressures, benzene may ionize and exhibit plasma behavior. The method proposed in this work for benzene could also be applied to create a comprehensive phase diagram of Hydrogen at certain pressure and temperature. Because the complex behavior of hydrogen, as well as the constant discovery of new varieties and the creation of many different phases of hydrogen makes it very difficult to construct a realistic phase diagram.
URI
https://hdl.handle.net/11511/90740
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2021.02.010
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Genetic algorithm for estimating multiphase flow functions from unsteady-state displacement experiments
Akın, Serhat (1998-04-30)
Relative permeability and capillary pressure are the primary flow parameters required to model multiphase flow in porous media. Frequently, these properties are estimated on the basis of unsteady state laboratory displacement experiments. Interpretation of the flood process to obtain relative permeability data is performed by one of two means: application of frontal advance theory or direct computer simulation. Application of frontal advance theory requires a number of experimental restrictions such that th...
Analysis of RC walls with a mixed formulation frame finite element
Sarıtaş, Afşin (2013-10-01)
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic...
Evaluation of surface free energy for PMMA films
Ozcan, Canturk; Hasırcı, Nesrin (2008-04-05)
Surface free energy (SFE) is a property resulted from the chemical structure and the orientation of the molecules at the surface boundary of the materials. For solids, it can be calculated from the contact angles of liquid drops with known surface tension, formed on the solid surface. There are various SFE evaluation methods based on different theoretical assumptions. In this study, SFE and the dispersive, polar, acidic and basic components of the SFE of a polymeric material, poly(methyl methacrylate) (PMMA...
Simulation of laminar microchannel flows with realistic 3D surface roughness
Akbaş, Batuhan; Sert, Cüneyt; Department of Mechanical Engineering (2019)
Effects of flow development and surface roughness on the pressure drop characteristics of laminar liquid flowsinside microchannels are investigated numerically using OpenFOAM. Channels with square cross section of 500 μm×500 μmand length of 80 mm are studied. Top surface of the channels are artificially roughened using thespatial frequency methodto create 8 different roughness profiles. Scaling the relative roughness ({u1D700}) values of each profile to three different values (1.0, 2.5and5.0 %),a total of 2...
Numerical analysis of natural convective heat transfer through porous medium
Aylangan, Benan; Yüncü, Hafit; Department of Mechanical Engineering (2006)
In this thesis, natural convective heat transfer through an impermeable and fluid saturated porous medium is investigated numerically. A FORTRAN based code is developed and used in order to present the outputs of the applied model and the assumptions. The solutions of flow fields and temperature fields are presented within the medium. Moreover, Nusselt number variations for different values of Darcy, Prandtl, and Rayleigh numbers, and some other thermodynamic properties are investigated and presented. Compa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ibrahimoglu, D. Üner, A. Veziroglu, F. Karakaya, and B. Ibrahimoglu, “Construction of phase diagrams to estimate phase transitions at high pressures: A critical point at the solid liquid transition for benzene,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 15168–15180, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90740.