Development of Injectable Cell Carrier Systems for Bone Tissue Engineering

2015-10-24
Aydoğdu Kayadelen, Hazal
Keskin, Dilek
Baran, Erkan Türker
Tezcaner, Ayşen

Suggestions

Development of microcarrier systems for bone tissue engineering
Aydoğdu, Hazal; Tezcaner, Ayşen; Baran, Erkan Türker; Department of Biomedical Engineering (2015)
Current strategies in bone tissue engineering have largely focused on development of carrier systems for repair and regeneration of bone tissue defects. The microcarrier systems offer an efficient method of delivery of cells with non-invasive injectable system. In this study, three-dimensional hydrogel microspheres were developed via water-in-oil emulsion method. In the first part of the thesis, porous pullulan (PULL) microspheres, with average size of 153±46 µm, were prepared and the surface of the microsp...
Development of Silk Fibroin/CNF Scaffolds for Cardiac Patch Applications
Tufan, Yiğithan; Garipcan, Bora; Ercan, Batur (null; 2019-09-30)
Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications
Isikli, C.; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2012-02-01)
Composite scaffolds prepared from natural polymers and hydroxyapatite (HA) are expected to have enhanced osteoconductive properties and as a result gained much attention in recent years for use in bone tissue-engineering applications. Although there are various natural polymers available for this purpose, chitosan (C) and gelatin (G) are commonly studied because of their inherent properties. The aim of this study was to prepare three-dimensional (3D) scaffolds using these two natural polymers and to add eit...
Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matri...
Development of diffusion bonded materials for electronics cooling applications
Atabay, Sıla Ece; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2017)
Failure of most of the electronic systems are originating from deterioration of the components due to excessive heat flux generation. The unstoppable demand for more complex and miniaturized electronic systems makes the development of more suitable and feasible production methods for their cooling systems and components compulsory. In the scope of this study diffusion bonding behavior of the aluminum (Al) 6063 alloy was investigated to make this bonding method and alloy system available for the electronic c...
Citation Formats
H. Aydoğdu Kayadelen, D. Keskin, E. T. Baran, and A. Tezcaner, “Development of Injectable Cell Carrier Systems for Bone Tissue Engineering,” 2015, Accessed: 00, 2021. [Online]. Available: http://www.biomed2015.org/asset/1/ABSTRACT_BOOK_EWAB_BIOMED_161215_FINAL_index.pdf.