Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of diffusion bonded materials for electronics cooling applications
Download
index.pdf
Date
2017
Author
Atabay, Sıla Ece
Metadata
Show full item record
Item Usage Stats
269
views
140
downloads
Cite This
Failure of most of the electronic systems are originating from deterioration of the components due to excessive heat flux generation. The unstoppable demand for more complex and miniaturized electronic systems makes the development of more suitable and feasible production methods for their cooling systems and components compulsory. In the scope of this study diffusion bonding behavior of the aluminum (Al) 6063 alloy was investigated to make this bonding method and alloy system available for the electronic cooling systems. In diffusion bonding every parameter has an important effect on the properties of the resulting joints. These effects were investigated in this study to determine the optimum bonding parameters in terms of the resulting mechanical properties of the joints. Consequently, maximum bond shear strength was achieved under 13 MPa pressure at 520C for three hours when the bonded samples were cooled in air. Preserving the physical and chemical properties of the base metal is essential along with obtaining high bond strengths for the formation of a solid joint. To minimize the degradation in the properties of the alloy without altering the composition, silver, nickel and gold interlayers were applied to the bond interface. However, interlayer addition was proven to be unsuccessful in terms of bond formation. Rather than using an interlayer, addition of copper (Cu) and tin (Sn) as alloying elements to the Al 6063 was also studied to examine their effect on the properties of both the base metal and diffusion bonded joints. Cu alloying was found to be preventing the loss in the mechanical properties of the base metal without causing any increase in the bond strength. On the other hand, enhancement of joint formation was observed in the Sn containing alloys along with a slight decrease in the strength of the base metal.
Subject Keywords
Aluminum alloys.
,
Diffusion bonding (Metals).
,
Electronic apparatus and appliances
URI
http://etd.lib.metu.edu.tr/upload/12621297/index.pdf
https://hdl.handle.net/11511/26639
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Characterization of spray cooling for electronic devices
Öksüz, Selçuk; Çetinkaya, Tahsin Ali; Department of Mechanical Engineering (2014)
The trends in electronics industry are towards miniaturizing and increasing power needs that result in high heat fluxes. High heat fluxes lead to thermal problems and performance loss in devices. Well known cooling techniques, such as utilization of fans or single phase liquid cooling, have limited cooling capacity. Among two phase cooling methods, spray cooling is one of the best cooling technique. Thus, in this study it is aimed to construct a compact and high performance yet simple experimental setup for...
Investigation of flow and heat transfer behavior of integrated pin fin-aluminum foam heat sink
ŞAHİN, Yiğit Serkan; TOPRAK, Beytullah İsmet; SOLMAZ, İsmail; Bayer, Özgür (2023-01-01)
With the rapid development in the electronics industry, the thermal management of high power density elec-tronic products (HPDEPs) has become very important and requires innovative heat removal technologies. In this study, an integrated heat sink (IHS) fabricated by combining aluminum foam and pin-finned heat sink config-urations that are frequently used in the cooling of electronic products has been proposed as an effective solution for the thermal management of HPDEPs. The heat removal and pressure drop c...
Comparison of the thermal and pressure drop characteristics of a conventional fin block and partially metal foam embedded heat sinks
Ataer, Süleyman Kaancan; Yamalı, Cemil; Albayrak, Kahraman; Department of Mechanical Engineering (2014)
Despite the downsizing of the electronic components, the increase in the power consumption of the electronic components and correspondingly the rise in the loss of power that transforms into heat have given a momentum in the search for different cooling methods for thermal sinks by the thermal engineers. Excessively heated regions that form on the small areas where the heat generating components contact the heat sinks create a thermal resistance for the heat flow from the surface of the component to the cha...
Numerical investigation of natural convection from inclined plate finned heat sinks
Mehrtash, Mehdi; Tarı, İlker; Department of Mechanical Engineering (2011)
Finned heat sink use for electronics cooling via natural convection is numerically investigated. An experimental study from the literature that is for vertical surfaces is taken as the base case and the experimental setup is numerically modeled using commercial CFD software. The flow and temperature fields are resolved. A scale analysis is applied to produce an order-of-magnitude estimate for maximum convection heat transfer corresponding to the optimum fin spacing. By showing a good agreement of the result...
Design and experimental investigation of microchannel heat exchanger
Çetin, Murat; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
Due to the high performance of electronic components, the heat generation is increasing dramatically. Heat dissipation becomes a significant issue in efficiency promotion and stable operation. Microchannels are of current interest for use in heat exchangers where very high heat transfer performance is desired. Microchannels provide high heat transfer coefficients because of their small hydraulic diameters. In this study, the design and experimental investigation of fluid flow and heat transfer in a microcha...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. E. Atabay, “Development of diffusion bonded materials for electronics cooling applications,” M.S. - Master of Science, Middle East Technical University, 2017.