Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
Date
2017-01-26
Author
Uregen, Nurhan
Pehlivanoglu, Kubra
Ozdemir, Yagmur
DEVRİM, YILSER
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
314
views
0
downloads
Cite This
In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matrix helps to improve the acid doping, proton conductivity and acid leaching properties. The SEM analyses have proved the uniform and homogeneous distribution of GO in composite membranes. The composite membranes were tested in a single HT-PEMFC with a 5 cm(2) active area at 165 degrees C without humidification. HT-PEMFC tests show that PBI/ GO composite membrane with 2 wt. % GO content performed better than bare PBI membrane at non humidified condition. At ambient pressure and 165 degrees C, the maximum power density of the PBI/GO-1 membrane can reach 0.38 W/cm(2), and the current density at 0.6 V is up to 0.252 A/cm(2), with H-2/air. The results indicate the PBI/GO composite membranes could be utilized as the proton exchange membranes for HT-PEMFC. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
High temperature proton exchange membrane
,
Fuel cell
,
Polybenzimidazole
,
Graphene oxide
URI
https://hdl.handle.net/11511/67711
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2016.07.009
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells
Ozdemir, Yagmur; Uregen, Nurhan; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped PBI nanocomposite membranes were prepared by dispersion of various amounts of inorganic nanoparticles in PBI polymer followed by phosphoric acid (H3PO4) doping for high temperature proton exchange membrane fuel cells (HT-PEMFC). All of the PBI composite membranes were cast from the same FBI polymer with the same molecular weight. Titanium dioxide (TiO2), silicon dioxide (SiO2) and inorganic proton conductor zirconium phosphate (ZrP) were used as inorganic fillers. The PB...
Development of self-humidifying nano-composite membrane for polymer electrolyte membrane fuel cell
Çaçan, Umut Baki; Özkan, Necati; Devrim, Yılser; Department of Polymer Science and Technology (2015)
Low humidity self-humidifying nano-composite membrane electrode assemblies (MEA) were developed for Polymer Electrolyte Membrane Fuel Cell (PEMFC) working at elevated temperatures. The nano-composite membranes were prepared by adding nano-sized silica particles (SiO2) or inorganic fillers with a size of approximately 20 nm to a polymeric material which is commercially named as Nafion (Perfluoro Sulfonic Acid/PFSA). The particle content of the nano-composite membranes were between 2.5 – 10 wt. %. In this man...
Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique
Devrim, Yilser; Erkan, Serdar; BAÇ, NURCAN; Eroğlu, İnci (2012-11-01)
electrode assemblies with Nafion/nanosize titanium silicon dioxide (TiSiO4) composite membranes were manufactured with a novel ultrasonic-spray technique and tested in proton exchange membrane fuel cell (PEMFC). Nafion/TiO2 and Nafion/SiO2 nanocomposite membranes were also fabricated by the same technique and their characteristics and performances in PEMFC were compared with Nafion/TiSiO4 mixed oxide membrane. The composite membranes have been characterized by thermogravimetric analysis, scanning electron m...
Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics
Sezgin, Berna; Caglayan, Dilara Gulcin; DEVRİM, YILSER; Steenberg, Thomas; Eroğlu, İnci (2016-06-22)
The objective of this study is to observe the effect of the critical design parameters, velocities of inlet gases (hydrogen and air) and the conductivity of polymer membrane, on the performance of a high temperature PEM fuel cell. A consistent and systematic mathematical model is developed in order to study the effect of these parameters. The model is applied to an isothermal, steady state, three-dimensional PEM fuel cell in order to observe concentration profiles, current density profiles and polarization ...
Nafion/titanium silicon oxide nanocomposite membranes for PEM fuel cells
DEVRİM, YILSER; Erkan, Serdar; BAÇ, NURCAN; Eroğlu, İnci (2013-04-01)
In the present study, Nafion/Titanium Silicon Oxide (TiSiO4) nanocomposite membranes were prepared by recasting method for proton exchange membrane fuel cells. The composite membrane containing 10wt% TiSiO4 had a membrane thickness of 80 mu m. The membrane was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM and XRD results have proven the uniform and homogeneous distribution of TiSiO4 in Nafion, and consequently, the crystalline character of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Uregen, K. Pehlivanoglu, Y. Ozdemir, and Y. DEVRİM, “Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 2636–2647, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67711.