Validation of the Particle in Cell Monte Carlo Collision numerical code for the RF discharge simulations

2014-04-01
Kuşoğlu Sarıkaya, Cemre
Rafatov, İsmail
Çakır, Serhat

Suggestions

VALIDATION OF THE PARTICLE IN CELL MONTE CARLO COLLISION NUMERICAL CODE FOR THE RF DISCHARGE SIMULATION
Kuşoğlu Sarıkaya, Cemre; Rafatov, İsmail; Çakır, Serhat (2016-3-01)
We developed 1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) numerical code for the RF (radio-frequency) capacitive glow discharge. This method includes the solution of the Lorentz force equation for the motion of super particles and the Poisson equation for the electric field. Collisions between the particles are modeled with the Monte Carlo method. In this process, the isotropic and charge exchange collisions between the ion-neutral pairs, as well as the elastic, excitation and ionization collisions...
Validation of MISES 2 D Boundary Layer Code for High Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (2007-01-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage, and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed which can be executed quickly for each of many operating conditions, and on each of several design sections which will accurately capture loss, turning and loading. This paper presents the validation of a boundary ...
Validation of depth-averaged mixing length turbulence model for uniform channel flows/
Karaman, Çağrı Hasan; Aydın, İsmail; Department of Civil Engineering (2014)
A one-dimensional depth averaged turbulence model based on volumetric mixing length definition is developed for shallow flows. Numerical solution of the model is done using finite volume method for steady, uniform closed duct flows to observe lateral momentum exchange over depth discontinuities. The model is verified by comparison to two-dimensional numerical solutions and to the experimental data available in the literature. The model is then applied to uniform free surface flows in rectangular and compoun...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
Validation of 3D finite element solution for laterally loaded passive piles
Ekici, A.; Huvaj Sarıhan, Nejan (2014-06-20)
Three full scale field experiments reported by De Beer&Wallays (1972) and Esu&D'Elia (1974) have been modeled using 3D finite element method with PLAXIS 3D. Shear box models were established to eliminate the effect of site geometries and slope angles which were not reported in these cases. Lateral movement of an unstable soil and loading of passive piles were generated by prescribed horizontal surface displacements in the upper half of the shear box model. Measured field values of pile deflection, bending m...
Citation Formats
C. Kuşoğlu Sarıkaya, İ. Rafatov, and S. Çakır, “Validation of the Particle in Cell Monte Carlo Collision numerical code for the RF discharge simulations,” 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74213.