Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrical Impedance Tomography Induced Current
Date
2006-01-01
Author
Gençer, Nevzat Güneri
Metadata
Show full item record
Item Usage Stats
220
views
0
downloads
Cite This
The ultimate goal of induced‐current electrical impedance tomography (ICEIT) is to image the electrical impedance distribution within the human body. In ICEIT, time‐varying magnetic fields are applied to induce currents in the body and surface voltage measurements are used to reconstruct impedance distribution. Time‐varying fields are usually generated by sinusoidal current‐carrying wires encircling the conducting body. Given the conductivity distribution, calculating the surface voltages due a given coil configuration is named as the forward problem of ICEIT. Reconstructing the unknown impedance distribution from the surface voltage measurements is the inverse problem. This article introduces the basic theory and numerical studies related to the forward and inverse problem of ICEIT. Basic properties of a possible data acquisition system are discussed. Images reconstructed using a 16‐electrode, 6‐coil data acquisition system are presented.
Subject Keywords
Electrical impedance tomography
,
Image reconstruction
,
Electrical current induction
,
Finite element method
URI
https://hdl.handle.net/11511/75370
Relation
Wiley Encyclopedia of Biomedical Engineering
Collections
Department of Electrical and Electronics Engineering, Book / Book chapter
Suggestions
OpenMETU
Core
ELECTRICAL-IMPEDANCE TOMOGRAPHY OF TRANSLATIONALLY UNIFORM CYLINDRICAL OBJECTS WITH GENERAL CROSS-SECTIONAL BOUNDARIES
IDER, YZ; Gençer, Nevzat Güneri; ATALAR, E; TOSUN, H (1990-03-01)
An algorithm is developed for electrical impedance tomography (EIT) of finite cylinders with general cross-sectional boundaries and translationally uniform conductivity distributions. The electrodes for data collection are assumed to be placed around a crosssectional plane; therefore the axial variation of the boundary conditions and also the potential field are expanded in Fourier series. For each Fourier component a two-dimensional (2-D) partial differential equation is derived. Thus the 3-D forward probl...
Data acquisition system for Lorentz force electrical impedance tomography using magnetic field measurements
Kaboutari, Keivan; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2017)
Lorentz Force Electrical Impedance Tomography (LFEIT) is a novel imaging modality to image electrical conductivity properties of biological tissues. This modality is recently proposed for early stage diagnosis of cancerous tissues. The main aim of this thesis study is to develop a data acquisition system for LFEIT. Design of contactless receiver sensor, static magnetic field generation (0.56 T is generated by permanent neodymium magnets), amplification of received signals and experimental studies using vari...
Induced current magnetic resonance electrical impedance tomography (ICMREIT) with low frequency switching of gradient fields
Eroğlu, Hasan Hüseyin; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2017)
In this thesis, it is aimed to investigate induced current magnetic resonance electrical impedance tomography (ICMREIT) starting from modeling and analysis to experimental validation. Forward and inverse problems of ICMREIT are formulated. A magnetic resonance imaging (MRI) pulse sequence is proposed for the realization of ICMREIT using the slice selection (z) gradient coil of MRI scanners. Considering the proposed MRI pulse sequence, relationship between the low frequency (LF) MR phase and the secondary ma...
Electrical impedance tomography: Induced-current imaging achieved with a multiple coil system
Gençer, Nevzat Güneri; Williamson, SJ (1996-02-01)
An experimental study of induced-current electrical impedance tomography verifies that image quality Is enhanced by employing six rather than three induction coils by increasing the number of independent measurements. However, with an increasing number of coils, the inverse problem becomes more sensitive to measurement noise, Using 16 electrodes to measure surface voltages, it Is possible to collect 6 x 15 = 90 independent measurements. For comparison purposes, images of two dimensional conductivity perturb...
Data acquisition system for MAET with magnetic field measurements
Kaboutari, Keivan; Tetik, Ahmet Onder; Ghalichi, Elyar; Gozu, Mehmet Soner; Zengin, Reyhan; Gençer, Nevzat Güneri (2019-06-01)
Magneto-acousto-electrical tomography (MAET) is an imaging modality to image the electrical conductivity of biological tissues. It is based on electrical current induction by using ultrasound under a static magnetic field. The aim of this study is to develop a data acquisition system for MAET based on magnetic field measurements. The static magnetic field is generated by six permanent neodymium magnets. A 16-element linear phased array (LPA) transducer is utilized to generate acoustic pressure waves inside ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. G. Gençer,
Electrical Impedance Tomography Induced Current
. 2006.