Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Periodic micro hole texturing with metal assisted chemical etching for solar cell applications: dependence of etch rate on orientation
Date
2017-01-01
Author
Altınoluk, Hayriye Serra
Çiftpınar, Emine Hande
Demircioğlu, Olgu
Turan, Raşit
Metadata
Show full item record
Item Usage Stats
213
views
0
downloads
Cite This
Surface texturing is an indispensable process for solar cell fabrication. The interaction of the surface with the incoming sunlight is controlled by texturing in such a way that the absorption is maximized through multiple interactions. Wet and dry etching techniques have been used to create textured surfaces on solar cells. Other than standard alkaline texturing used by the industry, metal assisted etching (MAE) appears to be a promising texturing technique with greater potential application for multi-crystalline solar cell fabrication. It is possible to achieve both random and periodic patterns with MAE which is relatively cheaper than dry plasma etching techniques. In this study, periodic hole patterns with micron sized diameters and periodicity were aimed to be achieved. Etching rate was shown to be strongly dependent on the surface orientation. Uniformly distributed patterns with various diameter and period values were successfully obtained. Fabrication of solar cells on these surface patters were demonstrated. Performance of solar cells was evaluated through parameters like efficiency, open circuit voltage and short circuit current
Subject Keywords
Surface texturing
,
Light trapping
,
Metal assisted etching
,
Periodic patterning
,
Micro and nano hole texturing of crystalline silicon surface
URI
https://hdl.handle.net/11511/75831
Journal
Journal of Materials Science and Nanotechnology
DOI
https://doi.org/10.15744/2348-9812.5.102
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Angular Dependence of Solar Cell Parameters in Crystalline Silicon Solar Cells Textured with Periodic Array of Microholes
Altinoluk, Serra; Kumar, Naveen; Çiftpınar, Emine Hande; Demircioglu, O.; Turan, Raşit; Vasileska, Dragica (2020-09-01)
Surface texturing is an indispensable way of increasing absorption in solar cells. In order to properly characterize the effect of texturing, the angular dependence of the incidence light should be addressed. This is particularly important when the actual application where the incidence angle of the sunlight varies during the day is considered. This study presents the angular dependence of solar cell parameters in the case of periodically textured crystalline silicon (c-Si) solar cells with microholes. A st...
Light trapping by micro and nano-hole texturing of single-crystalline silicon solar cells
ALTINOLUK, Serra H.; CIFTPINAR, Hande E.; DEMİRCİOĞLU, Olgu; ES, FIRAT; BAYTEMİR, Gulsen; AKAR, Orhan; AYDEMİR, Akin; SARAC, Adem; Akın, Tayfun; Turan, Raşit (Elsevier BV; 2016-03-09)
The efficiency of a solar cell strongly depends on the interaction between the incoming light beam and the surface of the device. Any process enhances light-surface interaction increases absorption probability of the light; thus, improves generated current, in turn. Generated current could be improved either by light trapping or by increased device thickness. Considering fabrication costs and recombination losses, mechanically thin optically thick wafers are being focused on in terms of light trapping prope...
DEVELOPMENT AND EVALUATION OF LASER PROCESSED LIGHT MANAGEMENT INTERFACES FOR GRAPHENE/SILICON SCHOTTKY SOLAR CELLS
Avishan, Nardin; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2022-12-20)
Graphene/silicon Schottky solar cells are one of the extensively studied topics during the last decade due to the high conductivity, high transparency, and mechanical flexibility properties of graphene. One of the most efficient and long-lasting methods used for performance enhancement for graphene/silicon Schottky solar cells is silicon surface texturing. It significantly increases the light absorption of silicon by controlling the incoming light through multiple interactions which is called light trapping...
Investigation On Different Surface Modifications Using Laser Texturing
Radfar, Behrad; Es, Fırat; Turan, Raşit (2017-09-29)
One of the important factors that determines the performance of a crystalline silicon solar cell is the surface structuring. Surface not only affects the electrical properties with recombination but also the optical properties via light trapping. To minimize reflection from the flat surface and improve light trapping, the crystalline silicon wafers must be textured. For monocrystalline Si cells, anisotropic alkaline etchants are commonly used to create pyramids on the surface. However, this method is not su...
Aluminum induced texturing of sandy and prism glasses: Combination of micro/nano texture with macro texture
Ünal, Mustafa; Donerscark, Ergi; Ozkol, Engin; Turan, Raşit (2017-08-01)
Aluminum induced texturing (AIT) is one of the most promising texturing methods, which can be applied on glass substrates for solar cell applications. Combination of different dimensional structures exhibits the opportunity to achieve enhanced light trapping schemes. Here in this study, float glass and macro textured sandy and prism glasses went through Aluminum induced texturing (AIT) process in order to enhance light management. Surface morphologies were investigated by FE-SEM and optical measurements in ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. S. Altınoluk, E. H. Çiftpınar, O. Demircioğlu, and R. Turan, “Periodic micro hole texturing with metal assisted chemical etching for solar cell applications: dependence of etch rate on orientation,”
Journal of Materials Science and Nanotechnology
, pp. 1–8, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/75831.