Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimating the shape of targets with a PHD filter
Date
2011-07-08
Author
Lundquist, Christian
Granström, Karl
Orguner, Umut
Metadata
Show full item record
Item Usage Stats
41
views
0
downloads
Cite This
This paper presents a framework for tracking extended targets which give rise to a structured set of measurements per each scan. The concept of a measurement generating point (MGP) which is defined on the boundary of each target is introduced. The tracking framework contains an hybrid state space where MGP:s and the measurements are modeled by random finite sets and target states by random vectors. The target states are assumed to be partitioned into linear and nonlinear components and a Rao-Blackwellized particle filter is used for their estimation. For each state particle, a probability hypothesis density (PHD) filter is utilized for estimating the conditional set of MGP:s given the target states. The PHD kept for each particle serves as a useful means to represent information in the set of measurements about the target states. The early results obtained show promising performance with stable target following capability and reasonable shape estimates.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052540742&origin=inward
https://hdl.handle.net/11511/76515
https://ieeexplore.ieee.org/abstract/document/5977704
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A PHD Filter for Tracking Multiple Extended Targets Using Random Matrices
Granstrom, Karl; Orguner, Umut (2012-11-01)
This paper presents a random set based approach to tracking of an unknown number of extended targets, in the presence of clutter measurements and missed detections, where the targets' extensions are modeled as random matrices. For this purpose, the random matrix framework developed recently by Koch et al. is adapted into the extended target PHD framework, resulting in the Gaussian inverse Wishart PHD (GIW-PHD) filter. A suitable multiple target likelihood is derived, and the main filter recursion is present...
A novel method for electromagnetic target classification using the music algorithm: Applied to small-scale aircraft targets
Secmen, Mustafa; Sayan, Gönül (2006-01-01)
This paper introduces a novel target classification method based on the extraction of target features by using natural response related late-time electromagnetic scattered field data. In the feature extraction stage, the use of multiple signal classification (MUSIC) algorithm together with a simple but effective feature fusion approach leads to a significant reduction in the sensitivity of classification accuracy to both aspect angle variations and the signal-to-noise ratio (SNR) levels of the data. Another...
Extended Target Tracking Using Gaussian Processes
Wahlström, Niklas; Özkan, Emre (2015-08-15)
In this paper, we propose using Gaussian processes to track an extended object or group of objects, that generates multiple measurements at each scan. The shape and the kinematics of the object are simultaneously estimated, and the shape is learned online via a Gaussian process. The proposed algorithm is capable of tracking different objects with different shapes within the same surveillance region. The shape of the object is expressed analytically, with well-defined confidence intervals, which can be used ...
Extended Target Tracking Using Polynomials With Applications to Road-Map Estimation
Lundquist, Christian; Orguner, Umut; Gustafsson, Fredrik (Institute of Electrical and Electronics Engineers (IEEE), 2011-01-01)
This paper presents an extended target tracking framework which uses polynomials in order to model extended objects in the scene of interest from imagery sensor data. State-space models are proposed for the extended objects which enables the use of Kalman filters in tracking. Different methodologies of designing measurement equations are investigated. A general target tracking algorithm that utilizes a specific data association method for the extended targets is presented. The overall algorithm must always ...
Measurement of lift and drag in morphing wings using a high precision load cell
Özkanaktı, Mehmet Harun; Özgen, Serkan; Department of Aerospace Engineering (2015)
This thesis focuses on computational and experimental investigation of three different morphing wing planforms and a baseline wing planform using a commercial CFD software and load cell measurements for the validation of an optimization code developed in a separate study. The wing planforms of interest originate from an optimization tool that minimizes drag for a constant value of lift at a given velocity. The first planform of interest is the planform for optimized drag subject to 14 m/s freestream velocit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Lundquist, K. Granström, and U. Orguner, “Estimating the shape of targets with a PHD filter,” 2011, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052540742&origin=inward.