Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new algorithm for automatic road network extraction in multispectral satellite images
Date
2012-05-09
Author
Karaman, Ersin
Çınar, Umut
Gedik, Ekin
Çetin, Yasemin
Halıcı, Uğur
Metadata
Show full item record
Item Usage Stats
219
views
0
downloads
Cite This
The aim of this study is to develop automatic road extraction algorithm in satellite images. As roads have different width and surface material characteristics in urban and rural areas, a modular approach for road extraction algorithm is desired. In this study, edge detection, segmentation, clustering and vegetation and land cover analyses are used. In order to combine the results of different methods, a score map based on segmentation analysis is constructed. Quantitative and visual results show that this method is successful in road extraction from satellite images.
Subject Keywords
Road extraction
,
Multispectral satellite images
,
Edge detection
,
Structural analysis
URI
https://hdl.handle.net/11511/77190
Conference Name
Proceedings of the 4th GEOBIA
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
A Computationally Efficient Appearance-Based Algorithm for Geospatial Object Detection
Arslan, Duygu; Alatan, Abdullah Aydın (2012-04-27)
A computationally efficient appearance-based algorithm for geospatial object detection is presented and evaluated specifically for aircraft detection from satellite imagery. An aircraft operator exploiting the edge information via gray level differences between the aircraft and its background is constructed with Haar-like polygon regions by using the shape information of the aircraft as an invariant. Fast evaluation of the aircraft operator is achieved by means of integral image. Rotated integral images are...
A new robust method for bridge detection from high resolution electro optic satellite images
Gedik, Ekın; Cınar, Umut; Karaman, Ersin; Çetin, Yasemin; Halıcı, Uğur (null; 2012-05-09)
In this paper, an automatic approach for identifying bridges over water in satellite images is proposed. The proposed algorithm has three main steps. It starts with extracting the water regions in the satellite image by thresholding the NIR and clustering the NDWI images. Next possible river and water canals in the extracted water mask are identified by certain geometric constraints. Finally possible bridge regions are extracted by morphological operations applied to the water and river-canal mask....
A Shadow based trainable method for building detection in satellite images
Dikmen, Mehmet; Halıcı, Uğur; Department of Geodetic and Geographical Information Technologies (2014)
The purpose of this thesis is to develop a supervised building detection and extraction algorithm with a shadow based learning method for high-resolution satellite images. First, shadow segments are identified on an over-segmented image, and then neighboring shadow segments are merged by assuming that they are cast by a single building. Next, these shadow regions are used to detect the candidate regions where buildings most likely occur. Together with this information, distance to shadows towards illuminati...
An automatic geo-spatial object recognition algorithm for high resolution satellite images
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-09-26)
This paper proposes a novel automatic geo-spatial object recognition algorithm for high resolution satellite imaging. The proposed algorithm consists of two main steps; a hypothesis generation step with a local feature-based algorithm and a verification step with a shape-based approach. In the hypothesis generation step, a set of hypothesis for possible object locations is generated, aiming lower missed detections and higher false-positives by using a Bag of Visual Words type approach. In the verification s...
Road network extraction from high-resolution multi spectral satellite images
Karaman, Ersin; Çetin, Yasemin; Department of Information Systems (2012)
In this thesis, an automatic road extraction algorithm for multi-spectral images is developed. The developed model extracts elongated structures from images by using edge detection, segmentation and clustering techniques. The study also extracts non-road regions like vegetative fields, bare soils and water bodies to obtain more accurate road map. The model is constructed in a modular approach that aims to extract roads with different characteristics. Each module output is combined to create a road score map...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Karaman, U. Çınar, E. Gedik, Y. Çetin, and U. Halıcı, “A new algorithm for automatic road network extraction in multispectral satellite images,” Rio de Janeiro - Brazil, 2012, p. 455, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/77190.