Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Utilization of Optical Fiber System for Mass Movement Monitoring
Date
2016-03-02
Author
Arslan, Arzu
Koçkar, Mustafa Kerem
Akgün, Haluk
Metadata
Show full item record
Item Usage Stats
57
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/79844
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Utilization of Optical Fiber System for Mass Movement Monitoring
Arslan Kelam, Arzu; Akgün, Haluk (2016-04-01)
Utilization of fiber loop ring down technique for sensing applications
Yolalmaz, Alim; Danışman, Mehmet Fatih; Bek, Alpan; Department of Micro and Nanotechnology (2017)
Fiber loop ring down (FLRD) spectroscopy is based on multiple interaction of laser light with sample/analyte. It is evolved from cavity ring down spectrometer with addition of optical fiber. Measurement accuracy rises with multiple interactions and this enhances the minimum detection limit compared to other spectrometers using single pass interaction such as FTIR, UV-VIS spectrometer. The other advantages of this technique are its insensitivity to laser fluctuation and detector performance. In this study, t...
Utilization of friction stir processing to improve the mechanical properties of gas metal arc welded 5083 aluminum alloy plates
Takht Firouzeh, Shahin; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2016)
Fatigue failure of the welded structures is a major problem in engineering applications. It is known that the heat affected zone (HAZ) of the welded Al-alloys is prone to fail due to coarse microstructure and poor mechanical properties. Therefore, any improvement in HAZ may extend the service life of the welded component. The hypothesis of this study is that localized application of friction stir processing (FSP) before welding may improve the mechanical properties of HAZ, and thus, may reduce the fatigue c...
Application of an optical fiber-based system for mass movement monitoring
Arslan Kelam, Arzu; Akgün, Haluk; KOÇKAR, MUSTAFA KEREM (2022-03-01)
This paper assesses the stages and findings of a mass movement monitoring system developed for continuous long-term monitoring applications using optical fiber cable as a sensor to decrease the risks associated with slope instabilities. During this study, a system composed of optical fiber cables and a device referred to as the Brillouin Optical Time Domain Analyzer (BOTDA) has been used. This system has been implemented in a risky landslide area in the Bahcecik region of Kocaeli, one of the active landslid...
UTILIZATION OF MODAL TEST TECHNIQUES FOR QUALITY CONTROL OF MASS MANUFACTURED PARTS
Gencoglu, Caner; Gurel, Asli Arife; Koc, Ege Can (2016-11-17)
Bringing a high tech product to the market as soon as possible has never been so critical. Quality control of critical parts manufactured in large quantities is a problem to solve in many industries ranging from aerospace to automotive. If there are precision parts with very tight dimensional tolerances in the assembly, each and every dimension of every part must be measured. Otherwise parts with dimensions out of tolerances will create more trouble in the later steps of the assembly. Measuring the dimensio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Arslan, M. K. Koçkar, and H. Akgün, “Utilization of Optical Fiber System for Mass Movement Monitoring,” 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79844.