Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generative Data Augmentation for Vehicle Detection in Aerial Images
Date
2021-01-15
Author
Kumdakçı, Hilmi
Öngün, Cihan
Temizel, Alptekin
Metadata
Show full item record
Item Usage Stats
375
views
0
downloads
Cite This
Scarcity of training data is one of the prominent problemsfor deep networks which require large amounts data. Data augmentationis a widely used method to increase the number of training samples andtheir variations. In this paper, we focus on improving vehicle detectionperformance in aerial images and propose a generative augmentationmethod which does not need any extra supervision than the boundingbox annotations of the vehicle objects in the training dataset. The pro-posed method increases the performance of vehicle detection by allowingdetectors to be trained with higher number of instances, especially whenthere are limited number of training instances. The proposed method isgeneric in the sense that it can be integrated with different generators.The experiments show that the method increases the Average Precisionby up to 25.2% and 25.7% when integrated with Pluralistic and DeepF
Subject Keywords
Data augmentation
,
Vehicle detection,
,
UAV
,
Drone
URI
https://hdl.handle.net/11511/79893
Conference Name
Workshop on Analysis of Aerial Motion Imagery (WAAMI 2020) in conjunction with25th International Conference on Pattern Recognition (ICPR 2020)
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
Vehicle detection on small scale data by generative data augmentation
Kumdakcı, Hilmi; Temizel, Alptekin; Department of Modeling and Simulation (2021-2-03)
Scarcity of training data is one of the prominent problems for deep neural networks,which commonly require high amounts of data to display their potential. Data aug-mentation techniques are frequently applied during the pre-training and training phasesof deep neural networks to overcome the problem of having insufficient data for train-ing. These techniques aim to increase a neural network’s generalization performanceon unseen data by increasing the number of training samples and provide a more rep-resenta...
New Techniques in Profiling Big Datasets for Machine Learning with a Concise Review of Android Mobile Malware Datasets
CANBEK, Gurol; SAĞIROĞLU, ŞEREF; Taşkaya Temizel, Tuğba (2018-12-04)
As the volume, variety, velocity aspects of big data are increasing, the other aspects such as veracity, value, variability, and venue could not be interpreted easily by data owners or researchers. The aspects are also unclear if the data is to be used in machine learning studies such as classification or clustering. This study proposes four techniques with fourteen criteria to systematically profile the datasets collected from different resources to distinguish from one another and see their strong and wea...
BIG DATA FOR INDUSTRY 4.0: A CONCEPTUAL FRAMEWORK
Gökalp, Mert Onuralp; Kayabay, Kerem; Eren, Pekin Erhan; Koçyiğit, Altan (2016-12-17)
Exponential growth in data volume originating from Internet of Things sources and information services drives the industry to develop new models and distributed tools to handle big data. In order to achieve strategic advantages, effective use of these tools and integrating results to their business processes are critical for enterprises. While there is an abundance of tools available in the market, they are underutilized by organizations due to their complexities. Deployment and usage of big data analysis t...
Real-Time Lexicon-Based Sentiment Analysis Experiments On Twitter With A Mild (More Information, Less Data)
Arslan, Yusuf; Birtürk, Ayşe Nur; Djumabaev, Bekjan; Kucuk, Dilek (2017-12-14)
Sentiment analysis of Twitter data is a well studied area, however, there is a need for exploring the effectiveness of real-time approaches on small data sets that only include popular and targeted tweets. In this paper, we have employed several sentiment analysis techniques by using dynamic dictionaries and models, and performed some experiments on limited but relevant datasets to understand the popularity of some terms and the opinion of users about them. The results of our experiments are promising.
Hierarchical Coding for Cloud Storage: Topology-Adaptivity, Scalability, and Flexibility
Yang, Siyi; Hareedy, Ahmed; Calderbank, Robert; Dolecek, Lara (2022-06-01)
In order to accommodate the ever-growing data from various, possibly independent, sources and the dynamic nature of data usage rates in practical applications, modern cloud data storage systems are required to be scalable, flexible, and heterogeneous. The recent rise of the blockchain technology is also moving various information systems towards decentralization to achieve high privacy at low costs. While codes with hierarchical locality have been intensively studied in the context of centralized cloud stor...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Kumdakçı, C. Öngün, and A. Temizel, “Generative Data Augmentation for Vehicle Detection in Aerial Images,” presented at the Workshop on Analysis of Aerial Motion Imagery (WAAMI 2020) in conjunction with25th International Conference on Pattern Recognition (ICPR 2020), 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79893.