Outlier Detection and Quasi-periodicity Optimization Algorithm: Frequency Domain Based Outlier Detection (FOD)

2020-01-01
Outlier detection is one of the main challenges in the pre-processing stage of data analyses. In this study, we suggest a new non-parametric outlier detection technique which is based on the frequency-domain and Fourier Transform definitions and call it as the frequency-domain based outlier detection (FOD). From simulation results under various distributions and real data applications, we observe that our proposal approach is capable of detecting quasi-periodic outliers in time series data more successfully compared with other commonly used methods like z-score, box-plot and also faster than some specialized meth- ods Grubbs method and autonomous anomaly detection (AAD) method. Therefore, we consider that our proposal approach can be an alternative approach to find quasi-periodic outliers in time series data.
European Journal Of Operational Research

Suggestions

mmm: An R package for analyzing multivariate longitudinal data with multivariate marginal models
Asar, Oezguer; İlk Dağ, Özlem (2013-12-01)
Modeling multivariate longitudinal data has many challenges in terms of both statistical and computational aspects. Statistical challenges occur due to complex dependence structures. Computational challenges are due to the complex algorithms, the use of numerical methods, and potential convergence problems. Therefore, there is a lack of software for such data. This paper introduces an R package mmm prepared for marginal modeling of multivariate longitudinal data. Parameter estimations are achieved by genera...
PROGRESSIVE CLUSTERING OF MANIFOLD-MODELED DATA BASED ON TANGENT SPACE VARIATIONS
Gokdogan, Gokhan; Vural, Elif (2017-09-28)
An important research topic of the recent years has been to understand and analyze manifold-modeled data for clustering and classification applications. Most clustering methods developed for data of non-linear and low-dimensional structure are based on local linearity assumptions. However, clustering algorithms based on locally linear representations can tolerate difficult sampling conditions only to some extent, and may fail for scarcely sampled data manifolds or at high-curvature regions. In this paper, w...
LANDMINE DETECTION WITH MULTIPLE INSTANCE HIDDEN MARKOV MODELS
Yuksel, Seniha Esen; Bolton, Jeremy; Gader, Paul D. (2012-09-26)
A novel Multiple Instance Hidden Markov Model (MI-HMM) is introduced for classification of ambiguous time-series data, and its training is accomplished via Metropolis-Hastings sampling. Without introducing any additional parameters, the MI-HMM provides an elegant and simple way to learn the parameters of an HMM in a Multiple Instance Learning (MIL) framework. The efficacy of the model is shown on a real landmine dataset. Experiments on the landmine dataset show that MI-HMM learning is very effective, and ou...
Investigation and comparison of the preprocessing algorithms for microarrayanalysis for robust gene expression calculation and performance analysis of technical replicates
İLK, HAKKI GÖKHAN; İlk Dağ, Özlem; KONU KARAKAYALI, ÖZLEN; ÖZDAĞ, Hilal (2006-04-19)
Preprocessing of microarray data involves the necessary steps of background correction, normalization and summarization of the raw intensity data obtained from cDNA or oligo-arrays before statistical analysis. Several algorithms, namely RMA, dChip, and MAS5 exist for the preprocessing of Affymetrix microarray data. Previous studies have identified RMA as one of most accurate algorithms while MAS5 was characterized with lower accuracy and sensitivity levels. In this study, performance of different preprocess...
Assessment of software process and metrics to support quantitative understanding
TARHAN, AYÇA; Demirörs, Onur (2007-11-07)
The use of process metrics and data for quantitative understanding is not very straightforward. If we have an identification of process components and follow a measurement process, we are likely to use process metrics and data effectively. But if we don't have these practices, we can hardly trust oil process metrics and data for quantitative understanding. In this paper, we summarize eight case studies that we performed in different industrial contexts. The case studies rely on an assessment approach that i...
Citation Formats
E. C. Erkuş and V. Purutçuoğlu Gazi, “Outlier Detection and Quasi-periodicity Optimization Algorithm: Frequency Domain Based Outlier Detection (FOD),” European Journal Of Operational Research, pp. 1–15, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/80033.