Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Magnetohydrodynamic convection of Cu-water nanofluid in a square cavity with a circular cylinder
Date
2016-01-01
Author
Bozkaya, Canan
Metadata
Show full item record
Item Usage Stats
253
views
0
downloads
Cite This
The hydromagnetic free convection of a Cu-water nanofluid in a square cavity involving an adiabatic circular cylinder is numerically investigated in the presence of an inclined uniform magnetic field. The left and right walls of the cavity are kept at constant hot and cold temperatures, respectively, while the horizontal walls are assumed to be adiabatic. The coupled nonlinear equations of mass, momentum and energy governing the present problem are discretized using the dual reciprocity boundary element method which is a boundary only nature technique treating the nonlinear terms by the use of radial basis functions. The flow and thermal fields are analyzed through streamline, isotherm, and average Nusselt number plots for a wide range of controlling parameters, such as Rayleigh and Hartmann numbers, the nanoparticle volume fraction and the inclination angle of the magnetic field. The results reveal that heat transfer and fluid flow are strongly affected by the presence of the circular cylinder and the inclined magnetic field. © 2016, North Atlantic University Union NAUN. All rights reserved.
Subject Keywords
DRBEM
,
MHD
,
Nanofluids
,
Natural convection
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994772072&origin=inward
https://hdl.handle.net/11511/80618
Journal
International Journal of Mathematical Models and Methods in Applied Sciences
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field
TÜRK, ÖNDER; Tezer, Münevver (2017-03-01)
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide ()-water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the ...
Numerical investigation of unsteady natural convection from a heated cylinder in a square enclosure
Bozkaya, Canan (null; 2015-07-06)
A numerical study of two dimensional, unsteady, incompressible natural convection flow and heat transfer is performed in a square enclosure involving a heated circular cylinder. The natural convection is driven by a temperature difference between the cold outer square and hot inner circular cylinders. The temperature of the inner cylinder varies sinusoidally with time about a fixed mean temperature while the outer enclosure is kept at a lower constant temperature. The problem under consideration, which is g...
MHD natural convection flow in a porous cavity
Bozkaya, Canan (null; 2018-09-13)
A numerical investigation of natural convection flow in a cavity filled with a fluid-saturated porous medium in the presence of uniform magnetic field is performed. The steady, viscous, incompressible flow inside the porous medium is assumed to obey the Darcy law. The fluid physical properties are constant except the density in the body force term which is treated according to Boussinesq approximation. The fluid and porous medium are in thermal equilibrium. The governing equations subject to appropriate bou...
Natural convection flow of a nanofluid in an enclosure under an inclined uniform magnetic field
Tezer, Münevver; Bozkaya, Canan (2016-01-01)
In this study, the natural convection in a square enclosure filled with water-based aluminium oxide (Al2O3) under the influence of an externally applied inclined magnetic field is considered numerically. The flow is steady, two-dimensional and laminar; the nanoparticles and water are assumed to be in thermal equilibrium. The governing equations are solved in terms of stream function-vorticity-temperature using both the dual reciprocity boundary element method and the finite element method to see the influen...
RBF Solution of Incompressible MHD Convection Flow in a Pipe
Gürbüz, Merve; Tezer, Münevver (2016-10-12)
The steady convection flow of a viscous, incompressible and electrically conducting fluid is considered in a lid-driven cavity under the effect of a uniform horizontally applied magnetic field. The governing equations are the Navier-Stokes equations of fluid dynamics including buoyancy and Lorentz forces and the energy equation including Joule heating and viscous dissipation. These coupled equations are solved iteratively in terms of velocity components, stream function, vorticity, pressure and temperature ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Bozkaya, “Magnetohydrodynamic convection of Cu-water nanofluid in a square cavity with a circular cylinder,”
International Journal of Mathematical Models and Methods in Applied Sciences
, pp. 332–339, 2016, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994772072&origin=inward.