Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
EVALUATION OF SEISMIC ENERGY IN SIMPLE STRUCTURAL SYSTEMS USING SIMULATED GROUND MOTIONS
Date
2018-06-25
Author
Karım Zadeh Naghshıneh, Shaghayegh
Ozsarac, Volkan
Askan Gündoğan, Ayşegül
Erberik, Murat Altuğ
Metadata
Show full item record
Item Usage Stats
303
views
0
downloads
Cite This
In recent years, there has been a strong interest on energy-based design and assessment methods for structural systems. The underlying research has been mostly performed using real ground motion records taken from existing earthquakes worldwide. Results may involve bias due to lack of homogeneity of the available ground motion dataset in terms of magnitudes, source to site distances or soil conditions. In this study a large set of ground motion records is simulated within a parametric exercise to investigate the effect of different intensity measures on the energy-based response of simple SDOF structures. To generate simulated records, the stochastic finite-fault methodology which is effective in simulating a wide range of frequencies including those that influence the built environment is used. The simulations are performed on active faults around Duzce city center located on the western segments of North Anatolian Fault zone in Turkey. The simulated records cover a wide range of moment magnitude, source-to-site distances and soil conditions. To assess the response statistics on SDOF models, time history analyses with simulated records are performed. Input energy, damping energy and hysteretic energy are considered as the main output parameters. The results of this study reveal that energy is a more stable parameter than the other response parameters such as displacement and force. However, it is important to dissipate the estimated input energy through damping and inelastic action. Finally, it is believed that conducting parametric seismic analysis based on simulated records yield realistic results since these records provide variability in seismic demand.
URI
https://hdl.handle.net/11511/87172
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
An energy-based seismic response evaluation of simple structural systems with simulated ground motions
Karimzadeh, Shaghayegh; Ozsarac, V.; Askan, A.; Erberik, Murat Altuğ (Earthquake Engineering Research Institute; 2018-01-01)
In recent years, there has been a strong interest on energy-based design and assessment methods for structural systems. The underlying research has been mostly performed using real ground motion records taken from existing earthquakes worldwide. Results may involve bias due to lack of homogeneity of the available ground motion dataset in terms of magnitudes, source to site distances or soil conditions. In this study a large set of ground motion records is simulated within a parametric exercise to investigat...
An energy-based seismic response evaluation of simple structural systems with simulated ground motions
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ (null; 2017-04-18)
In recent years, there has been a strong interest on energy-based design and assessment methods for structural systems. The underlying research has been mostly performed using real ground motion records taken from existing earthquakes worldwide. Results may involve bias due to lack of homogeneity of the available ground motion dataset in terms of magnitudes, source to site distances or soil conditions. In this study,a large set of ground motion records are simulated within a p...
Experimental and numerical investigation of cfs-concrete composite trusses
Güldür, Hazal; Baran, Eray; Department of Civil Engineering (2018)
Cold-formed steel (CFS) structural systems have been intensely studied especially due to the economy and ease of implementation that they provide. A common failure mode of CFS members is the local instability of the section. The aim of this study is to control the local instability in CFS floor trusses by providing concrete infill inside compression chord members. Numerical and experimental studies were conducted in order to investigate the flexural behavior of steel-concrete composite trusses made of CFS s...
Energy-based response of simple structural systems by using simulated ground motions
Ozsarac, Volkan; Karim Zadeh Naghshineh, Shaghayegh; Erberik, Murat Altuğ; Askan Gündoğan, Ayşegül (Elsevier BV; 2017-09-13)
For the last two decades, there has been a growing and remarkable attention on the energy-based design and assessment approaches for structural systems. These approaches have also been implemented to some of the national seismic design codes as alternative methods in addition to the traditional force-based design methodology. The underlying research has been often carried out by using actual ground motion records taken from many different earthquakes all over the world. However, such an attempt impairs the ...
Use of simulated ground motions for the evaluation of energy response of simple structural systems
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ (Elsevier BV, 2019-08-01)
The literature on energy-based seismic design and assessment methodologies of structural systems mostly relies on real ground motion datasets. However, certain bias exists due to lack of homogeneity in available ground motion datasets. In this study, a large set of ground motions is simulated. Next, the effects of various parameters on seismic behavior of SDOF systems in terms of energy are studied using nonlinear time history analyses. The stochastic finite-fault simulations are performed on the western pa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Karım Zadeh Naghshıneh, V. Ozsarac, A. Askan Gündoğan, and M. A. Erberik, “EVALUATION OF SEISMIC ENERGY IN SIMPLE STRUCTURAL SYSTEMS USING SIMULATED GROUND MOTIONS,” 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87172.