Permutation polynomials and construction of bent functions

Ongan, Pınar
This thesis consists of two main parts: In the first part, a study of several classes ofpermutation and complete permutation polynomials is given, while in the second part,a method of construction of several new classes of bent functions is described.The first part consists of the study of several classes of binomials and trinomialsover finite fields. A complete list of permutation polynomials of the formf(x) =xqn−1q−1+1+bx∈Fqn[x]is obtained for the casen= 5, and a criterion on permutationpolynomials of the same type is derived for the general case. Furthermore, it is shownthat whenqis odd, trinomials of the formf(x) =x5h(xq−1)∈Fq2[x], whereh(x) =x5+x+ 1never permutesFq2.A method of constructing several new classes of bent functions via linear translatorsand permutation polynomials forms the second part of the thesis. First, a way to lifta permutation overF2tto a permutation overF2mis described, wheret|m. Then,via this method,3-tuples of particular permutations that lead to new classes of bentfunctions are obtained. As a last step, the fact that none of the bent functions obtainedhere will be contained in Maiorana-McFarland class is proved.


On plateaued functions, linear structures and permutation polynomials
Mesnager, Sihem; Kaytancı, Kübra; Özbudak, Ferruh (2019-01-01)
We obtain concrete upper bounds on the algebraic immunity of a class of highly nonlinear plateaued functions without linear structures than the one was given recently in 2017, Cusick. Moreover, we extend Cusick’s class to a much bigger explicit class and we show that our class has better algebraic immunity by an explicit example. We also give a new notion of linear translator, which includes the Frobenius linear translator given in 2018, Cepak, Pasalic and Muratović-Ribić as a special case. We find some app...
Some permutations and complete permutation polynomials over finite fields
Ongan, Pinar; GÜLMEZ TEMÜR, BURCU (2019-01-01)
In this paper we determine b is an element of F-qn*. for which the polynomial f(x) = x(s+1) + bx is an element of F-qn[x] is a permutation polynomial and determine b is an element of F-gn* for which the polynomial f(x) = x(s+1)+ bx is an element of F(q)n [x] is a complete permutation polynomial where s = q(n)-1/t, t is an element of Z(+) such that t vertical bar q(n) - 1.
Hierarchical control with partial observations: Sufficient conditions
Boutin, Olivier; Komenda, Jan; Masopust, Tomas; Schmidt, Klaus Verner; Van Schuppen, Jan H. (2011-12-01)
In this paper, hierarchical control of both monolithic and modular discrete-event systems under partial observations is studied. Two new conditions, called observation consistency and local observation consistency, are proposed. These conditions are sufficient for the preservation of observability between the original and the abstracted plant. Moreover, it is shown that both conditions are compositional, that is, they are preserved by the synchronous product. This property makes it possible to use hierarchi...
Dosi, A. (American Mathematical Society (AMS), 2020-01-01)
The paper is devoted to a noncommutative holomorphic functional calculus and its application to noncommutative algebraic geometry. A description is given for the noncommutative (infinite-dimensional) affine spaces A(q)(x), 1 = 0, are calculated.
Pure gauge spin-orbit couplings
Shikakhwa, M. S. (2017-01-17)
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2 x 2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, bot...
Citation Formats
P. Ongan, “Permutation polynomials and construction of bent functions,” Ph.D. - Doctoral Program, Middle East Technical University, 2021.