Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Inference in multivariate linear regression models with elliptically distributed errors
Date
2014-08-01
Author
İslam, Muhammed Qamarul
Yazici, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
188
views
0
downloads
Cite This
In this study we investigate the problem of estimation and testing of hypotheses in multivariate linear regression models when the errors involved are assumed to be non-normally distributed. We consider the class of heavy-tailed distributions for this purpose. Although our method is applicable for any distribution in this class, we take the multivariate t-distribution for illustration. This distribution has applications in many fields of applied research such as Economics, Business, and Finance. For estimation purpose, we use the modified maximum likelihood method in order to get the so-called modified maximum likelihood estimates that are obtained in a closed form. We show that these estimates are substantially more efficient than least-square estimates. They are also found to be robust to reasonable deviations from the assumed distribution and also many data anomalies such as the presence of outliers in the sample, etc. We further provide test statistics for testing the relevant hypothesis regarding the regression coefficients.
URI
https://hdl.handle.net/11511/92564
Journal
JOURNAL OF APPLIED STATISTICS
DOI
https://doi.org/10.1080/02664763.2014.890177
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Estimation and hypothesis testing in stochastic regression
Sazak, Hakan Savaş; Tiku, Moti Lal; İslam, Qamarul; Department of Statistics (2003)
Regression analysis is very popular among researchers in various fields but almost all the researchers use the classical methods which assume that X is nonstochastic and the error is normally distributed. However, in real life problems, X is generally stochastic and error can be nonnormal. Maximum likelihood (ML) estimation technique which is known to have optimal features, is very problematic in situations when the distribution of X (marginal part) or error (conditional part) is nonnormal. Modified maximum...
Estimation in the simple linear regression model with one-fold nested error
Ülgen, Burçin Emre; Güven, Bilgehan; Department of Statistics (2005)
In this thesis, estimation in simple linear regression model with one-fold nested error is studied. To estimate the fixed effect parameters, generalized least squares and maximum likelihood estimation procedures are reviewed. Moreover, Minimum Norm Quadratic Estimator (MINQE), Almost Unbiased Estimator (AUE) and Restricted Maximum Likelihood Estimator (REML) of variance of primary units are derived. Also, confidence intervals for the fixed effect parameters and the variance components are studied. Finally, ...
Convergence Error and Higher-Order Sensitivity Estimations
Eyi, Sinan (2012-10-01)
The aim of this study is to improve the accuracy of the finite-difference sensitivities of differential equations solved by iterative methods. New methods are proposed to estimate the convergence error and higher-order sensitivities. The convergence error estimation method is based on the eigenvalue analysis of linear systems, but it can also be used for nonlinear systems. The higher-order sensitivities are calculated by differentiating the approximately constructed differential equation with respect to the...
Bayesian semiparametric models for nonignorable missing datamechanisms in logistic regression
Öztürk, Olcay; Kalaylıoğlu Akyıldız, Zeynep Işıl; Department of Statistics (2011)
In this thesis, Bayesian semiparametric models for the missing data mechanisms of nonignorably missing covariates in logistic regression are developed. In the missing data literature, fully parametric approach is used to model the nonignorable missing data mechanisms. In that approach, a probit or a logit link of the conditional probability of the covariate being missing is modeled as a linear combination of all variables including the missing covariate itself. However, nonignorably missing covariates may n...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Q. İslam and M. Yazici, “Inference in multivariate linear regression models with elliptically distributed errors,”
JOURNAL OF APPLIED STATISTICS
, vol. 41, no. 8, pp. 1746–1766, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92564.