Dynamic signaling games with quadratic criteria under Nash and Stackelberg equilibria

Download
2020-05-01
Yuksel, Serdar
Sarıtaş, Serkan
Gezici, Sinan
This paper considers dynamic (multi-stage) signaling games involving an encoder and a decoder who have subjective models on the cost functions. We consider both Nash (simultaneous-move) and Stackelberg (leader-follower) equilibria of dynamic signaling games under quadratic criteria. For the multi-stage scalar cheap talk, we show that the final stage equilibrium is always quantized and under further conditions the equilibria for all time stages must be quantized. In contrast, the Stackelberg equilibria are always fully revealing. In the multi-stage signaling game where the transmission of a Gauss-Markov source over a memoryless Gaussian channel is considered, affine policies constitute an invariant subspace under best response maps for Nash equilibria; whereas the Stackelberg equilibria always admit linear policies for scalar sources but such policies may be nonlinear for multi-dimensional sources. We obtain an explicit recursion for optimal linear encoding policies for multi-dimensional sources, and derive conditions under which Stackelberg equilibria are informative.

Suggestions

Belief propagation decoding of polar codes under factor graph permutations
Peker, Ahmet Gökhan; Yücel, Melek Diker; Department of Electrical and Electronics Engineering (2018)
Polar codes, introduced by Arıkan, are linear block codes that can achieve the capacity of symmetric binary-input discrete memoryless channels with low encoding and decoding complexity. Polar codes of block length N are constructed by channel polarization method, which consists of channel combining and splitting operations to obtain N polarized subchannels from N copies of binary-input discrete memoryless channels. As N grows, symmetric channel capacities of the polarized subchannels converge to either 0 or...
Pure gauge spin-orbit couplings
Shikakhwa, M. S. (2017-01-17)
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2 x 2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, bot...
Quadratic Multi-Dimensional Signaling Games and Affine Equilibria
Sarıtaş, Serkan; Gezici, Sinan (2017-02-01)
This paper studies the decentralized quadratic cheap talk and signaling game problems when an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. The main contributions of this study are the extension of Crawford and Sobel's cheap talk formulation to multi-dimensional sources and to noisy channel setups. We consider both (simultaneous) Nash equilibria and (sequential) Stackelberg equilibria. We show that for arbitrary scalar sources, in the presence of misalignment, th...
Quantitative measures of observability for stochastic systems
Subaşı, Yüksel; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2012)
The observability measure based on the mutual information between the last state and the measurement sequence originally proposed by Mohler and Hwang (1988) is analyzed in detail and improved further for linear time invariant discrete-time Gaussian stochastic systems by extending the definition to the observability measure of a state sequence. By using the new observability measure it is shown that the unobservable states of the deterministic system have no effect on this measure and any observable part wit...
Transformation Electromagnetics Based Analysis of Waveguides With Random Rough or Periodic Grooved Surfaces
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Institute of Electrical and Electronics Engineers (IEEE), 2013-02-01)
A computational model is introduced which employs transformation-based media to increase the computational performance of finite methods (such as finite element or finite difference methods) for analyzing waveguides with grooves or rough surfaces. Random behavior of the roughness is taken into account by utilizing the Monte Carlo technique, which is based on a set of random rough surfaces generated from Gaussian distribution. The main objective of the proposed approach is to create a single mesh, and to ana...
Citation Formats
S. Yuksel, S. Sarıtaş, and S. Gezici, “Dynamic signaling games with quadratic criteria under Nash and Stackelberg equilibria,” AUTOMATICA, vol. 115, pp. 0–0, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94562.