Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Theoretical Performance Bound for Joint Beamformer Design of Wireless Fronthaul and Access Links in Downlink C-RAN
Download
index.pdf
Date
2021-01-01
Author
Kadan, Fehmi Emre
Yılmaz, Ali Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
156
views
103
downloads
Cite This
It is known that data rates in standard cellular networks are limited due to inter-cell interference. An effective solution to this problem is to use the multi-cell cooperation idea. In Cloud Radio Access Network (C-RAN), which is a candidate solution in 5G and future communication networks, cooperation is applied by means of central processors (CPs) connected to simple remote radio heads with finite capacity fronthaul links. In this study, we consider a downlink C-RAN with a wireless fronthaul and aim to minimize total power spent by jointly designing beamformers for fronthaul and access links. We consider the case where perfect channel state information is not available in the CP. We first derive a novel theoretical performance bound for the problem defined. Then we propose four algorithms with different complexities to show the tightness of the bound. The first two algorithms apply successive convex optimizations with semi-definite relaxation ideas where the other two are adapted from well-known beamforming design methods. The detailed simulations under realistic channel conditions show that as the complexity of the algorithm increases, the corresponding performance becomes closer to the bound.
Subject Keywords
Array signal processing
,
Beamforming
,
C-RAN
,
Channel estimation
,
Interference
,
Optimization
,
performance bound
,
semi-definite relaxation
,
Signal to noise ratio
,
Standards
,
Wireless communication
,
wireless fronthaul
URI
https://hdl.handle.net/11511/94915
Journal
IEEE Transactions on Wireless Communications
DOI
https://doi.org/10.1109/twc.2021.3109837
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A turbo detection scheme for EGPRS
Başköy (Gülmez), Ülkü; Baykal, Buyurman; Department of Electrical and Electronics Engineering (2003)
Enhanced Data Rates for Global Evolution (EDGE) is one of the 3G wireless communication standards, which provides higher data rates by adopting 8-PSK modulation in TDMA system infrastructure of GSM. In this thesis, a turbo detection receiver for Enhanced General Packet Radio Services (EGPRS) system, which is the packet switching mode of EDGE, is studied. In turbo detection, equalization and channel decoding are performed iteratively. Due to 8-ary alphabet of EGPRS modulation, full state trellis based equali...
Beamformer Design With Smooth Constraint-Free Approximation in Downlink Cloud Radio Access Networks
Kadan, Fehmi Emre; Yılmaz, Ali Özgür (2021-01-01)
It is known that data rates in standard cellular networks are limited due to inter-cell interference. An effective solution of this problem is to use the multi-cell cooperation idea. In Cloud Radio Access Network, which is a candidate solution in 5G and beyond, cooperation is applied by means of central processors (CPs) connected to simple remote radio heads with finite capacity fronthaul links. In this study, we consider a downlink scenario and aim to minimize total power spent by designing beamformers. We...
Analysis and design of dual-polarized wideband patch antennas electromagnetically excited with elevated wide strips /
Yılmaz, Adil Fırat; Alatan, Lale; Department of Electrical and Electronics Engineering (2015)
In communication systems like WiMAX, WLAN, 3G, 4G and LTE, design of wideband and dual polarized antennas are required. It is known that bandwidth of patch antennas can be broaden by using thick air substrates. The bandwidth can be further improved by using three dimensional feed strucutures that are electromagnetically coupled to the patch. In this thesis, microstrip patch antennas that are excited by elevated wide strips are studied. First, a linearly polarized antenna is considered and the effects of ant...
Density estimation in large-scale wireless sensor networks
Eroğlu, Alperen; Onur, Ertan; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2015)
Density estimation is a significant problem in large-scale wireless ad-hoc networks since the density drastically impacts the network performance. It is crucial to make the network adaptive in the run-time to the density changes that may not be predictable in advance. Local density estimators are required while taking run-time control decisions to improve the network performance. A wireless node may estimate the density locally by measuring the received signal strength (RSS) of packets sent by its neighbour...
A Comparison of sparse signal recovery and approximate bayesian inference methods for sparse channel estimation
Uçar, Ayla; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
The concept of sparse representation is one of the central methodologies of modern signal processing and it has had significant impact on numerous application fields such as communications and imaging. Sparsity expresses the idea that the information rate of a continuous time signal may be much smaller than suggested by its bandwidth, or that a discrete time signal depends on a number of degrees of freedom which is comparably much smaller than its (finite) length. With recent advances in sparse signal estim...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. E. Kadan and A. Ö. Yılmaz, “A Theoretical Performance Bound for Joint Beamformer Design of Wireless Fronthaul and Access Links in Downlink C-RAN,”
IEEE Transactions on Wireless Communications
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94915.