Multi-layer substrate integrated wave-guide E-plane power divider

2012-07-30
Mohammadi, P.
Demir, Şimşek
A new multilayer power divider with Substrate Integrated Waveguide (SIW) technology is proposed. In this work, two-way and four-way power divider realizations by two-layer and three-layer SIW, respectively, are presented. Considering the small size of the structure, extension of this method to n-way power dividers and antenna feed networks are possible, and it has the potential for integration of compact multi-layer SIW circuits. Due to the lack of a multiport counterpart of the two-port thru-reflect-line (TRL) calibration, scattering matrix of an n-way power divider must be reconstructed from measured data. A method is introduced for reconstruction of S-parameters of the n-port non-coaxial device with a two-port vector network analyzer (VNA). The two-way power divider is designed for 9-10.5 GHz band. Transmission coefficient about -3:5 dB and return loss below -10 dB has been measured for this two-way power divider. For four-way power divider, transmission about -7 dB in the 9.5-10.5 GHz has been achieved.
Progress In Electromagnetics Research C

Suggestions

Fully Integrated Autonomous Interface With Maximum Power Point Tracking for Energy Harvesting TEGs With High Power Capacity
Tabrizi, Hamed Osouli; Jayaweera, Herath M. P. C.; Muhtaroglu, Ali (Institute of Electrical and Electronics Engineers (IEEE), 2020-05-01)
In this article, a novel fully autonomous and integrated power management interface circuit is introduced for energy harvesting using thermoelectric generators (TEGs) to supply power to Internet of Thing nodes. The circuit consists of a self-starting dc & x2013;dc converter based on a dual-phase charge pump with LC-tank oscillator, a digital MPPT unit, and a 1-V LDO regulator. The novel maximum power point tracking (MPPT) algorithm avoids open-circuit state, and accommodates varying input power and ultra-lo...
HYBRID BEAMFORMING WITH TWO BIT RF PHASE SHIFTERS IN SINGLE GROUP MULTICASTING
Demir, Özlem Tuğfe; Tuncer, Temel Engin (2016-03-25)
In this paper, an efficient hybrid beamforming architecture combining analog and digital beamforming is proposed to reduce the number of radio frequency (RF) chains. It provides a good compromise between the higher degree of freedom of digital beamforming and hardware cost and complexity. In this hybrid system, two bit RF phase shifters are used as analog beamformers due to the fact that this enables the conversion of the combinatorial optimization problem to a continuous programming formulation. The overal...
Active clamped ZVS forward converter with soft-switched synchronous rectifier for high efficiency, low output voltage applications
Acik, A; Cadirci, I (Institution of Engineering and Technology (IET), 2003-03-01)
The analysis, design, and implementation of an active clamped ZVS forward converter equipped with a soft-switched synchronous rectifier (ACFC-SR), proposed for high-efficiency low output voltage DC-DC converter applications, is presented. The converter efficiency is maximised due to soft switching of the main, active clamp, synchronous rectifier, and freewheeling MOSFET switches. The operating principles of the ACFC-SR are analysed in detail, and the converter performance is compared with that of alternativ...
Performance Evaluation and Selection of PWM Switching and Control Methods for Grid Connected Modular Multilevel Converters
Ciftci, Baris; Hava, Ahmet Masum (2015-09-24)
This paper focuses on the determination of suitable carrier based pulse width modulation (PWM) switching and control methods for grid connected modular multilevel converters (MMCs). Characterization of various level-shifted and phase-shifted carrier based PWM methods are provided in terms of output voltage waveforms both for N+1 and 2N+1 level output phase voltages. Carrier based PWM method based control approaches are evaluated for MMC. Performances of different control methods are evaluated and compared f...
Tunable Graphene Integrated Perfect Metamaterial Absorber for Energy Harvesting and Visible Light Communication
Sabah, Cumali (2018-02-09)
Tunable graphene integrated metamaterial absorber is proposed for energy harvesting and visible light communication. The structure provides unity absorption in the visible spectrum in which it can be used perfect absorber for energy harvesting. In addition, it also provides tunability because of the graphene conductivity to be used as photoconductive or thermal switch for visible light communication.
Citation Formats
P. Mohammadi and Ş. Demir, “Multi-layer substrate integrated wave-guide E-plane power divider,” Progress In Electromagnetics Research C, vol. 30, pp. 159–172, 2012, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864201371&origin=inward.