High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80 °C

2022-06-01
Utilization of hyperthermophilic electro-active microorganisms in microbial electrolysis cells (MECs) that are used for hydrogen production from organic wastes offers significant advantages, such as increased reaction rate and enhanced degradation of insoluble materials. However, only a limited number of hyperthermophilic bioelectrochemical systems have been investigated so far. This study is the first to illustrate hydrogen production in hyperthermophilic MECs with a maximum rate of 0.57 ± 0.06 m3H2/m3d, where an iron reducing archaeon,Geoglobus acetivorans,was used as inoculum. In fact, this is the first study to report thatG. acetivorans, as the fourth hyperthermophilic electro-active archaeon. In single chamber MECs operated at 80 °C with a set potential of 0.7 V, a peak current density of 1.53 ± 0.24 A/m2has been attained and this is the highest record of current produced by pure culture hyperthermophilic microorganisms. Turnover cyclic voltammetry curve illustrated a sigmoidal shape (midpoint of −0.40 V vs. Ag/AgCl), and together with linear relation of scan rate and peak anodic current, proves the biofilm attachment to the anode and its capability of direct electron transfer. Along with simple substrate (acetate),G. acetivoranseffectively utilized dark fermentation effluent for hydrogen production in MECs.
Bioelectrochemistry

Suggestions

Enhancement in Oxygen Reduction Reaction Activity of Nitrogen-Doped Carbon Nanostructures in Acidic Media through Chloride-Ion Exposure
Jain, Deeksha; Mamtani, Kuldeep; Gustin, Vance; Gunduz, Seval; Çelik, Gökhan; Waluyo, Iradwikanari; Hunt, Adrian; Co, Anne C.; Ozkan, Umit S. (2018-07-11)
Nitrogen-doped carbon nanostructures (CNx) are promising cathode materials as catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane (PEM) fuel cells. Incorporation of chlorine into CNx catalysts using a facile methodology can lead to a significant improvement in the ORR activity in acidic media, as confirmed by electrochemical half-cell measurements. The chlorine-containing CNx catalyst (CNx-Cl) is synthesized by soaking CNx powder in 0.3 M HCl. The analysis of near-edge X-ray ab...
Enhanced solubility of siloxy-modified polyhedral oligomeric silsesquioxanes in supercritical carbon dioxide
Demirtas, Cansu; Dilek Hacıhabiboğlu, Çerağ (Elsevier BV, 2019-01-01)
Alkyl siloxy functionalization increases the solubility of polyhedral oligomeric silsesquioxanes (POSS) in supercritical carbon dioxide over an order of magnitude compared to its counterpart with fluoroalkyl groups. The studied component, octatrimethylsiloxy POSS also exhibits higher solubility than other previously studied POSS types with various alkyl and methacryl groups. The octatrimethylsiloxy POSS-CO2 solid-vapor equilibrium curves have been constructed at temperatures between 308 and 328 K by measuri...
Enhancement of the Start-Up Time for Microliter-Scale Microbial Fuel Cells (mu MFCs) via the Surface Modification of Gold Electrodes
Sen-Dogan, Begum; Okan, Meltem; Afsar-Erkal, Nilufer; Ozgur, Ebru; Zorlu, Ozge; Külah, Haluk (MDPI AG, 2020-07-01)
Microbial Fuel Cells (MFCs) are biological fuel cells based on the oxidation of fuels by electrogenic bacteria to generate an electric current in electrochemical cells. There are several methods that can be employed to improve their performance. In this study, the effects of gold surface modification with different thiol molecules were investigated for their implementation as anode electrodes in micro-scale MFCs (mu MFCs). Several double-chamber mu MFCs with 10.4 mu L anode and cathode chambers were fabrica...
Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action.
Turan, IS; Cakmak, FP; Kahraman, Deniz Cansen; Atalay, Rengül; Akkaya, EU (2014-12-01)
Enhanced spatiotemporal selectivity in photonic sensitization of dissolved molecular oxygen is an important target for improving the potential and the practical applications of photodynamic therapy. Considering the high intracellular glutathione concentrations within cancer cells, a series of BODIPY-based sensitizers that can generate cytotoxic singlet oxygen only after glutathione-mediated cleavage of the electron-sink module were designed and synthesized. Cell culture studies not only validate our design,...
High performance PEM fuel cell catalyst layers with hydrophobic channels
Avcioglu, Gokce S.; FIÇICILAR, BERKER; BAYRAKÇEKEN YURTCAN, Ayşe; Eroğlu, İnci (2015-06-29)
Polymer electrolyte membrane fuel cell performance has been enhanced with efficient water management by modification of the structure of the catalyst layer. Polytetrafluoroethylene (PTFE) was added to the catalyst layer structure by using two-step catalyst ink preparation method. Physical and electrochemical characterization of catalyst layers with hydrophobic nanoparticles were investigated via TGA-DTA, XRD, nitrogen physisorption, SEM, TEM, EDX analysis, and cyclic voltammetry technique. In addition, perf...
Citation Formats
A. Kaş and Y. D. Yılmazel, “High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80 °C,” Bioelectrochemistry, vol. 145, pp. 1–10, 2022, Accessed: 00, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1567539422000238?dgcid=author.