Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An approach for quantum capacitance of graphene, carbon nanotube, silicene and hexagonal boron nitride nanoscale supercapacitors by non-equilibrium Green's function method
Date
2022-01-01
Author
Özdoğan, Cem
Kökten, Hatice
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
We introduce a comprehensive approach to calculate quantum capacitance of nanoscale capacitors as a function of applied potential difference to have resemblance to actual device operating conditions. Ab initio analysis based on the non-equilibrium Green's functions combined with density functional theory was applied for different elementary materials and geometries for the soundness of the approach. The results of planar single layer graphene, silicene, and hexagonal boron nitride and for tubular carbon nanotube supercapacitor symmetric model systems on the quantum capacitance are presented together with widely utilized fixed band approximation at planar systems for comparison purposes. The proposed procedure not only successfully reproduced the results for planar systems in a qualitative manner but is also consistently applicable for non-planar (tubular) systems by remarking the robustness of the procedure. Our work highlights the importance of the separation spacing (such as contact distance) search in obtaining quantum capacitance for electric double layer supercapacitors. In that search procedure, it is basically aimed to minimize the charge on the leads/plates for eliminating quantum effects. Induced charge sites under the applied bias could be indicative in some degree for the possible ion adsorption/desorption from the electrolyte or redox reactions at electrode/electrolyte interface to create a double layer. So that the proposed approach on the presented study could also be treated as a qualitative measure on the quantum capacitance for realistic systems with dopants, defects, and functional groups for supercapacitor understanding.
Subject Keywords
Quantum capacitance
,
Supercapacitor
,
Energy storage
,
Non-equilibriumGreen's functions
,
Graphene
,
Carbon nanotube
,
Silicene
,
Hexagonal boron nitride
,
ELECTRICAL DOUBLE-LAYER
,
ENERGY-CONVERSION
,
IONIC LIQUIDS
,
ELECTROCHEMICAL CAPACITORS
,
HIGH-PERFORMANCE
,
HIGH-POWER
,
ELECTRODE MATERIALS
,
FUEL-CELLS
,
THIN-FILM
,
DIFFERENTIAL CAPACITANCE
URI
https://hdl.handle.net/11511/96423
Journal
FLATCHEM
DOI
https://doi.org/10.1016/j.flatc.2021.100313
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
A novel approach to detection of some parameters of induction motors
Özlü Ertan, Hatice Gülçin; Colak, Baris (2007-05-05)
This paper describes a novel approach for offline stator leakage inductance and online stator resistance estimation that can be used for self-tuning of induction motor drives. The paper briefly describes the theory behind the approach. The proposed methods are experimentally tested on an industrial induction motor and also tested on a washing machine motor designed for variable speed operation. Test results are given and the robustness of the approach is illustrated.
A High-Performance PWM Algorithm for Common-Mode Voltage Reduction in Three-Phase Voltage Source Inverters
Hava, Ahmet Masum (2011-07-01)
A high-performance pulsewidth modulation (PWM) algorithm with reduced common-mode voltage (CMV) and satisfactory overall performance is proposed for three-phase PWM inverter drives. The algorithm combines the near-state PWM (NSPWM) method that has superior overall performance characteristics at high modulation index, and MAZSPWM, a modified form of the active zero-state PWM method (AZSPWM1), which is suitable for low modulation index range of operation. Since AZSPWM1 has line-to-line voltage pulse reversals...
The electronic structure of a quantum well under an applied electric field
Sari, H; Ergun, Y; Sokmen, I; Tomak, Mehmet (Elsevier BV, 1996-01-01)
The effects of an applied electric field on quantum well subband energies are calculated variationally within the effective mass approximation for model potential profiles. The concept of a quasi-bound state is examined critically. For higher electric field values it is shown that the quasi-bound state approximation for the ground and first excited state of the electron, and for the ground state of the hole is valid. (C) 1996 Academic Press Limited
A Comparative Study on Non-Linear State Estimators Applied to Sensorless AC Drives: MRAS and Kalman Filter
Akin, Bilal; Orguner, Umut; Ersak, Aydin; Ehsani, Mehrdad (2004-11-06)
In this paper, two different nonlinear estimators applied to sensorless AC drives, Kalman Filtering techniques (EKF and UKF) and Model Reference Adaptive System (back emf ans reactive power models), are discussed and compared to each other. Both of the observer types are studied and analyzed both experimentally and theoretically. In order to compare the observers precisely, the observers are tested under the identical conditions.
A Kalman Filter Based Approach for Light Flicker Evaluation of Power Systems
Kose, Neslihan; Salor, Ozgul; Leblebicioğlu, Mehmet Kemal (2009-01-01)
In this paper, a Kalman filtering based approach is proposed to measure the light flicker of the electricity transmission systems. Analytical expressions of the instantaneous light flicker sensation are obtained beginning from a voltage waveform and these expressions are used to obtain a flicker estimation method based on the IEC (International Electrotechnical Commission) flickermeter. In the proposed method, the frequency domain components of the waveform are obtained by Kalman filtering and these compone...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Özdoğan and H. Kökten, “An approach for quantum capacitance of graphene, carbon nanotube, silicene and hexagonal boron nitride nanoscale supercapacitors by non-equilibrium Green’s function method,”
FLATCHEM
, vol. 31, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96423.