Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Downlink MU-MIMO With QoS Aware Transmission: Precoder Design and Performance Analysis
Date
2019-02-01
Author
Yalcin, Ahmet Zahid
Yüksel Turgut, Ayşe Melda
Bahceci, Israfil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
125
views
0
downloads
Cite This
In this paper, a downlink wireless communication channel is considered. The base station (BS) has common data for all users, unicast data for a set of intended users, and transmits the superposition of these messages. This setting neither falls into the non-orthogonal multiple access (NOMA) nor into the multi-group multicasting literatures. In NOMA systems, the BS has unicast data for all users, and multiple users share the same resources. In multi-group multicasting, there are non-overlapping groups, each demanding a different multicast message. This paper studies precoder design to achieve maximum weighted sum rate (WSR). It is first shown that the precoders designed for WSR maximization and weighted minimum mean square error (WMMSE) minimization are equivalent. Second, an iterative low complexity algorithm (named WMMSE), based on WMMSE transmit precoders and receivers, is proposed. Another low-complexity precoder, the phase aligned zero forcing (PAZF) precoder, is also introduced. The results show that both algorithms converge fast. The WMMSE algorithm outperforms both PAZF and the zero-forcing (ZF) precoder for all signal-to-noise ratio ranges. It offers better interference management and high coherent combining gains for common data while PAZF finds the optimal phase rotation on the ZF precoder, and increases coherent combining gains.
Subject Keywords
MIMO broadcast channel
,
MU-MIMO
,
multi-group multicast
,
precoder design
,
zero-forcing
,
NONORTHOGONAL MULTIPLE-ACCESS
,
SUM-RATE MAXIMIZATION
,
BROADCAST CHANNELS
,
OPTIMIZATION
,
CHALLENGES
,
SYSTEMS
,
MMSE
URI
https://hdl.handle.net/11511/96465
Journal
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
DOI
https://doi.org/10.1109/twc.2018.2886903
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Blind Channel Estimation Based on the Lloyd-Max Algorithm in Narrowband Fading Channels and Partial-Band Jamming
Dizdar, Onur; Yılmaz, Ali Özgür (2012-07-01)
In wireless communications, knowledge of the channel coefficients is required for coherent demodulation. In this work, a blind channel estimation method based on the Lloyd-Max algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation points for the received signal using the Lloyd-Max algorithm. The algorithm is investigated for frequency hopping systems with small hop durations and operating under partial-band jamming for both detecting the jammer and estimating the cha...
Blind channel estimation based on the Lloyd-Max algorithm innarrowband fading channels and jamming
Dizdar, Onur; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2011)
In wireless communications, knowledge of the channel coefficients is required for coherent demodulation. In this thesis, a blind channel estimation method based on the Lloyd-Max algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation points for the received signal using an iterative least squares approach. The algorithm is investigated for fast-frequency hopping systems with small block lengths and operating under partial-band and partial-time jamming for both detecti...
Interference suppression capability of faster than symbol rate sampling and frequency domain oversampling
Balevi, Eren; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2016)
Detection of symbols in the presence of many interference sources is a difficult task in wireless channels. It is obligatory to reduce the interference for reliable communication. In this dissertation, minimum mean square error (MMSE) detection is investigated to suppress interference. Faster Than Symbol Rate (FTSR) sampling and Frequency Domain Oversampling (FDO) methods are proposed to enhance the interference suppression level of MMSE detection for both single user and multiuser communication. The aim of...
Wideband Channel Estimation With a Generative Adversarial Network
Balevi, Eren; Andrews, Jeffrey G. (2021-05-01)
Communication at high carrier frequencies such as millimeter wave (mmWave) and terahertz (THz) requires channel estimation for very large bandwidths at low SNR. Hence, allocating an orthogonal pilot tone for each coherence bandwidth leads to excessive number of pilots. We leverage generative adversarial networks (GANs) to accurately estimate frequency selective channels with few pilots at low SNR. The proposed estimator first learns to produce channel samples from the true but unknown channel distribution v...
Discrete Relay Beamforming for Broadcasting with Relay Selection
Demir, Özlem Tuğfe; Tuncer, Temel Engin (2015-05-19)
In this paper, broadcast beamforming problem is considered in relay-assisted wireless networks. Two-phase relay communication is adopted. In the first phase, a source transmits common information to multiple relays which use amplify-and-forward relay protocol. Each relay multiplies its received signal by a complex weight and transmits it to the receivers. The amplitudes and phases of complex relay weights are chosen from discrete sets in order to decrease overhead for the feedback channel. Relay selection i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Z. Yalcin, A. M. Yüksel Turgut, and I. Bahceci, “Downlink MU-MIMO With QoS Aware Transmission: Precoder Design and Performance Analysis,”
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
, vol. 18, no. 2, pp. 969–982, 2019, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96465.