Adaptive envelope protection control of wind turbines under varying operational conditions

2022-05-01
This study introduces a new Envelope Protection System (EPS) algorithm forwind turbines. The algorithm is adaptive to turbine-changing operational conditions and can effectively reduceturbineexcessive/ultimate loads. Through an adaptive neural network, the proposed algorithm continuously monitors instantaneous wind and turbine states. Simultaneously, it predicts the near future response of the turbine load and detects its future crossing with a predefined safe envelope limit by comparing the actual wind speed to a theoretically estimated wind speed. When required, a protection action is applied based on the comparison to keep the turbine load response within the safe limit. In this paper, the thrust force is used as the critical load and is chosen as the limit parameter. Simulations are carried out using the MS (Mustafa Sahin) Bladed Wind Turbine Simulation Model for the National Renewable Energy Laboratory (NREL) 5MW turbine under normal turbulent winds with different mean values. Simulations show that the EPS algorithm adapts to varying operational conditions such as changes in turbine operating point in the below rated, transition, and above rated regions, as well asrotor bladeicing and successfully reduces the excessive thrust forces. Performance analyses indicate that, for keeping the thrust force within the limit, the proposed EPS algorithm reduces the thrust force by 98.89%, 98.43%, 99.26% relative to standard baseline controls in the aforementioned regions, respectively and by 99.61% under blade icing. Also, the mean value and the fluctuations of thrust force are reduced up to 5.52% and 68.7%, respectively. Depending on the operating region, the mean power decreases up to 2.07% or increases up to 1.21%, while power fluctuations decrease up to 30.97%.

Suggestions

Fault tolerant estimation of autonomous underwater vehicle dynamics via robust UKF
Hajiyev, Chingiz; Ata, Melih; Dinc, Mustafa; Söken, Halil Ersin (2012-07-30)
This article is basically focused on application of the Unscented Kalman Filter (UKF) algorithm to the estimation of high speed an autonomous underwater vehicle (AUV) dynamics. In the normal operation conditions of AUV, conventional UKF gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study, introduces Robust Unscented Kalman Filter (RUKF) algorithms w...
GPS-Based Real-Time Orbit Determination of Low Earth Orbit Satellites Using Robust Unscented Kalman Filter
Karslıoğlu, Mahmut Onur; Erdogan, Eren; Pamuk, Onur (2017-11-01)
In this research, a novel algorithm for real-time orbit determination (RTOD) is presented using the robust unscented Kalman filter (RUKF) with global positioning system (GPS) group and phase ionospheric correction (GRAPHIC) observables. To increase the reliability of the solution, a robust approach is included in the UKF to cope with the bad, invalid, or degraded measurements leading to the divergence or inaccurate output of the filter. Robustness is provided by making the filter less sensitive to faulty me...
Wavefront-ray grid FDTD algorithm
Ciydem, Mehmet; Koç, Seyit Sencer (2016-01-01)
A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Numerical simulati...
Transient signal detection in continuous GPS coordinate time series using empirical mode decomposition and principal component analysis
Özdemir, Soner; Karslıoğlu, Mahmut Onur.; Department of Geodetic and Geographical Information Technologies (2019)
Continuous Global Positioning System (GPS) coordinate time series might be exposed to tectonic and non-tectonic transient signals as well as the persistent signals such as secular rates and seasonal motions. Transient signal detection becomes challenging when the targeted signal is weak and buried in the noise. Incoherency of the transient signal in space and large number of sites in the GPS network make the detection even more complicated. We propose a new approach based on Empirical Mode Decomposition (EM...
Modulation and frequency response of GDDs in the millimeter wave/THz region
Alasgarzade, N.; Takan, T.; Uzun Kaymak, İlker Ümit; ŞAHİN, ASAF BEHZAT; Altan, Hakan (2015-09-22)
New methods are being developed for efficient detection of terahertz waves. While many detection techniques show promise their commercial development is still limited due to the overall complexity and cost of the imaging system. Using commercially available neon indicator lamps the interaction mechanism between the glow plasma and the millimeter / THz wave is investigated in detail as a function of the device speed, sensitivity to frequency and polarization of the light. A lock-in amplifier was used to meas...
Citation Formats
M. Şahin and İ. Yavrucuk, “Adaptive envelope protection control of wind turbines under varying operational conditions,” Energy, vol. 247, pp. 1–24, 2022, Accessed: 00, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360544222004479.