Implementation of non-equilibrium Johnson-King turbulance model in a Navier-Stokes solver

Korkem, Bülent


Implementation of rotation into a 2-d euler solver
Özdemir, Enver Doruk; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2005)
The aim of this study is to simulate the unsteady flow around rotating or oscillating airfoils. This will help to understand the rotor aerodynamics, which is essential in turbines and propellers. In this study, a pre-existing Euler solver with finite volume method that is developed in the Mechanical Engineering Department of Middle East Technical University (METU) is improved. This structured pre-existing code was developed for 2-D internal flows with Lax-Wendroff scheme. The improvement consist of firstly,...
Implementation of generalized Harvey-Shack theory in light scattering from rough surfaces
Gunoven, M.; Nasser, H.; Ünal, Mustafa; Aytekin, O.; Turan, Raşit; Bek, Alpan (2020-12-01)
We present a discrete implementation of generalized Harvey-Shack scalar scattering theory to calculate angular intensity distributions from height profiles of select randomly textured surfaces proposed for use in solar cells and covering a wide range of surface characteristics. We compare these calculations to high-resolution angular intensity distribution measurements. These comparisons suggest that the pupil function does benefit from an additional correction factor for rough surfaces containing lateral f...
Implementation of a DF algorithm on an FPGA platform
İpek, Abdullah Volkan; Severcan, Mete; Department of Electrical and Electronics Engineering (2006)
In this thesis work, the implementations of the monopulse amplitude comparison and phase comparison DF algorithms are performed on an FPGA platform. After the mathematical formulation of the algorithms using maximum-likelihood approach is done, software simulations are carried out to validate and find the DF accuracies of the algorithms under various conditions. Then the algorithms are implemented on an FPGA platform by utilizing platform specific software tools. Block diagrams of the hardware implementatio...
Implementation of turbulence models into a Navier-Stokes solver
Muşta, Mustafa Nail; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2004)
In order to handle turbulent flow problems, one equation turbulence models are implemented in to a previously developed explicit, Reynolds averaged Navier-Stokes solver. Discretization of Navier-Stokes solver is based on cell-vertex finite volume formulation combined with single step Lax-Wendroff numerical method which is second order accurate in space. Turbulent viscosity is calculated by using one equation Spalart-Allmaras and Baldwin-Barth turbulence transport equations. For the discretization of Spalart...
Implementation of coordinate transformations in periodic finite-element method for modeling rough surface scattering problems
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-05-01)
The coordinate transformation technique (with its current name of transformation electromagnetics) is applied to the finite-element method (FEM) with periodic boundary conditions for efficient Monte Carlo simulation of one-dimensional random rough surface scattering problems. In a unit cell of periodic structure, two coordinate transformations are used, one of which is a real transformation designed to model the rough surface with flat surface, and the other is a complex transformation used to design a perf...
Citation Formats
B. Korkem, “Implementation of non-equilibrium Johnson-King turbulance model in a Navier-Stokes solver,” Middle East Technical University, 1997.