Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Surveillance Video Querying With A Human-in-the-Loop
Date
2020-06-19
Author
STONEBROKER, MICHAEL
Bhargava, Bharat
Cafarella, Michael
COLLINS, ZACHARY
McClellan, Jenna
SIPSER, AARON
Sun, Tao
NESEN, ALİNA
SOLAIMAN, K.M.A.
MANI, GANAPATHY
Kochpatcharin, Kevin
Kochpatcharin, Kevin
Angın, Pelin
MACDONALD, JAMES
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
191
views
0
downloads
Cite This
SurvQ is a video monitoring system appropriate for surveillance applications such as those found in security and law enforcement. It performs real time object property identification and stores all data in a scalable DBMS. Standing queries implemented as database triggers are supported. SurvQ contains novel adaptive machine learning and algorithmic property classification. The application of SurvQ to assist the West Lafayette (IN) police department at identifying suspects in video is described. This paper also describes the basics of the SurvQ architecture and its human-in-the-loop interface designed to accelerate everyday police investigations.
URI
https://hilda.io/2020/proceedings/HILDA2020_paper6.pdf
https://hdl.handle.net/11511/96840
Conference Name
Workshop on Human-In-the-Loop Data Analytics (HILDA)
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Object tracking for surveillance applications using thermal and visible band video data fusion
Beyan, Çiğdem; Temizel, Alptekin; Department of Information Systems (2010)
Individual tracking of objects in the video such as people and the luggages they carry is important for surveillance applications as it would enable deduction of higher level information and timely detection of potential threats. However, this is a challenging problem and many studies in the literature track people and the belongings as a single object. In this thesis, we propose using thermal band video data in addition to the visible band video data for tracking people and their belongings separately for ...
HUMAN GAIT PARAMETER ESTIMATION BASED ON MICRO-DOPPLER SIGNATURES USING PARTICLE FILTERS
Guldogan, M. B.; Gustafsson, F.; Orguner, Umut; Bjorklund, S.; Petersson, H.; Nezirovic, A. (2011-05-27)
Monitoring and tracking human activities around restricted areas is an important issue in security and surveillance applications. The movement of different parts of the human body generates unique micro-Doppler features which can be extracted effectively using joint time-frequency analysis. In this paper, we describe the simultaneous tracking of both location and micro-Doppler features of a human using particle filters (PF). The results obtained using the data from a 77 GHz radar prove the successful usage ...
Mean-Shift Tracking for Surveillance Applications Using Thermal and Visible Band Data Fusion
Beyan, Cigdem; Temizel, Alptekin (2011-04-28)
Separate tracking of objects such as people and the luggages they carry is important for video surveillance applications as it would allow making higher level inferences and timely detection of potential threats. However, this is a challenging problem and in the literature, people and objects they carry are tracked as a single object. In this study, we propose using thermal imagery in addition to the visible band imagery for tracking in indoor applications (such as airports, metro or railway stations). We u...
Object Extraction and Classification in Video Surveillance Applications
Civelek, Muhsin; Yazıcı, Adnan (2017-05-01)
In this paper we review a number of methods used in video surveillance applications in order to detect and classify threats. Moreover, the use of those methods in wireless surveillance networks contributes to decreasing the energy consumption of the devices because it reduces the amount of information transferred through the network. In this paper we focus on the most popular object extraction and classification methods that are used in both wired and wireless surveillance applications. We also develop an a...
Automated crowd behavior analysis for video surveillance applications
Güler, Püren; Temizel, Alptekin; Taşkaya Temizel, Tuğba; Department of Information Systems (2012)
Automated analysis of a crowd behavior using surveillance videos is an important issue for public security, as it allows detection of dangerous crowds and where they are headed. Computer vision based crowd analysis algorithms can be divided into three groups; people counting, people tracking and crowd behavior analysis. In this thesis, the behavior understanding will be used for crowd behavior analysis. In the literature, there are two types of approaches for behavior understanding problem: analyzing behavi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. STONEBROKER et al., “Surveillance Video Querying With A Human-in-the-Loop,” presented at the Workshop on Human-In-the-Loop Data Analytics (HILDA), Amerika Birleşik Devletleri, 2020, Accessed: 00, 2022. [Online]. Available: https://hilda.io/2020/proceedings/HILDA2020_paper6.pdf.