Optical absorption spectroscopy at interfaces

2015-10-01
This chapter summarises the physical principles of optical absorption spectroscopy and its use for the characterisation of surfaces and interfaces. After a brief discussion of the fundamentals of absorption spectroscopy and its relation to quantum mechanics, the chapter discusses the basics of optics at interfaces, focusing on the absorption of light by molecules in the interfacial region. Because of fundamental similarities, the chapter will touch on spectroscopy of both electronic and vibrational transitions, with a strong focus on infrared absorption experiments. There is a brief discussion, with reference to examples, of experiments in internal and external reflection geometry, including a brief discussion of the measurement of spectra on different classes of substrates (metallic vs. transparent).

Suggestions

Photoluminescence specroscopy of CdS and GaSe
Seyhan, Ayşe; Turan, Raşit; Department of Physics (2003)
With the use of photoluminescence (PL) spectroscopy one can able to get a great deal of information about electronic structure and optical processes in semiconductors by the aid of optical characterization. Among various compound semiconductors, Cadmium Sulfide (CdS) and Gallium Selenide (GaSe) are interesting materials for their PL emissions. Particularly, due to its strong anisotropy, investigation of GaSe necessitates new experimental approaches to the PL technique. We have designed, fabricated and used ...
Model-based Inversion Methods for Compressive Spectral Imaging with Diffractive Lenses
Dogan, Didem; Öktem, Sevinç Figen (null; 2020-06-22)
We develop novel model-based inversion methods for compressive spectral imaging with diffractive lenses. These fast image reconstruction methods, exploiting data- adaptive convolutional dictionaries and sparsifying transforms, are applicable to any computational imaging problem with convolutional models.
Optical absorption of a quantum well with an adjustable asymmetry
Yildirim, H.; Tomak, Mehmet (Springer Science and Business Media LLC, 2006-04-01)
The effects of asymmetry and the electric field on the electronic subbands and the nonlinear intersubband optical absorption of GaAs quantum wells represented by a Poschl-Teller confining potential are studied. The potential itself can be made asymmetric through a correct choice of its parameter set and this adjustable asymmetry is important for optimizing the absorption. In that way optimal cases can be created. We calculate the modified wave functions and electronic subbands variationally. The linear and ...
Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions
Ciğeroğlu, Ender (2012-09-01)
In this paper, nonlinear free vibration of double walled carbon nanotubes (DWCNTs) embedded in an elastic medium with geometric nonlinearity and interlayer van der Waals force nonlinearity are studied. The motion of the DWCNT is represented by multiple eigenfunctions of the linear system which are referred as trial functions. Describing function method (DFM) is employed in order to represent the nonlinear forces as a multiplication of a nonlinear stiffness matrix and a displacement vector, which made it pos...
Nano-scale phase separation and glass forming ability of iron-boron based metallic glasses
Aykol, Muratahan; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2008)
This study is pertinent to setting a connection between glass forming ability (GFA) and topology of Fe-B based metallic glasses by combining intimate investigations on spatial atomic arrangements conducted via solid computer simulations with experimentations on high GFA bulk metallic glasses. In order to construct a theoretical framework, the nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys via Monte Carlo equilibration and reverse Monte Ca...
Citation Formats
Ç. Toparlı, Optical absorption spectroscopy at interfaces. 2015.