Strain gradient crystal plasticity: Thermodynamics and implementation

2017-12-01

Suggestions

Strain gradient crystal plasticity: thermodynamics and implementation
Yalçınkaya, Tuncay (Springer, 2016-01-01)
This chapter studies the thermodynamical consistency and the finite element implementation aspects of a rate-dependent nonlocal (strain gradient) crystal plasticity model, which is used to address the modeling of the size-dependent behavior of polycrystalline metallic materials. The possibilities and required updates for the simulation of dislocation microstructure evolution, grain boundary-dislocation interaction mechanisms, and localization leading to necking and fracture phenomena are shortly discussed a...
Strain Gradient Crystal Plasticity Approach to Modelling Micro-Plastic Flow and Localisation in Polycrystalline Materials
Simonovski, Igor; Yalçınkaya, Tuncay (2015-09-17)
Structural materials in the reactor pressure vessels are exposed to a harsh environment, resulting in a number of material degradation processes. Irradiation generates a number of point defects in the atomic structure of a material. In addition, plastic slip localization occurs on the grain level size where highly-deformed narrow bands of material appear already at the moderate strain levels. These bands are called channels or clear bands, because they are almost empty of irradiation defects, whereas the su...
Strain gradient crystal plasticity: Intergranular microstructure formation
Yalçınkaya, Tuncay (Springer, London/Berlin , 2017-12-01)
Strain gradient crystal plasticity: Intergranular microstructure formation
Özdemir, İzzet; Yalçınkaya, Tuncay (Springer International Publishing, 2016-01-01)
This chapter addresses the formation and evolution of inhomogeneous plastic deformation field between grains in polycrystalline metals by focusing on continuum scale modeling of dislocation-grain boundary interactions within a strain gradient crystal plasticity (SGCP) framework. Thermodynamically consistent extension of a particular strain gradient plasticity model, addressed previously (see also, e.g., Yalcinkaya et al, J Mech Phys Solids 59:1-17, 2011), is presented which incorporates the effect of grain ...
Strain Gradient Polycrystal Plasticity for Micro-Forming
Yalçınkaya, Tuncay; Özdemir, İzzet (2016-04-29)
The developments in the micro-device industry has produced a substantial demand for the miniaturized metallic components with ultra-thin sheet materials that have thickness dimensions on the order of 50-500 mu m which are produced through micro-forming processes. It is essential to have predictive tools to simulate the constitutive behavior of the materials at this length scale taking into account the physical and statistical size effect. Recent studies have shown that on the scale of several micrometers an...
Citation Formats
T. Yalçınkaya, Strain gradient crystal plasticity: Thermodynamics and implementation. 2017.