Minimizing the Number of Detrimental Objects in Multi-Dimensional Graph-Based Codes

Download
2020-09-01
Hareedy, Ahmed
Kuditipudi, Rohith
Calderbank, Robert
© 1972-2012 IEEE.The increasing demand for access to data has led to dramatic increases in data storage densities, and as densities increase, new sources of error appear. Multi-dimensional (MD) graph-based codes are capable of mitigating error sources like interference and channel non-uniformity in dense storage devices. A recent innovation improves the performance of MD spatially-coupled codes that are based on circulants by carefully relocating some circulants to minimize the number of short cycles. However, cycles become more detrimental when they combine together to form more advanced objects, e.g., absorbing sets, including low-weight codewords. In this paper, we show how MD relocations can be exploited to minimize the number of detrimental objects in the graph of an MD code. Moreover, we demonstrate the savings in the number of relocation arrangements earned by focusing on objects rather than their constituent cycles. Our technique is applicable to a wide variety of one-dimensional (OD) codes. Simulation results demonstrate significant lifetime gains achieved by the proposed MD codes on an industry-recommended model for Flash systems, and signal-to-noise ratio gains on an industry-recommended model for magnetic recording systems, both with respect to OD codes with similar parameters. The second order analysis of MD relocations relies on conditions and options for an object, called a pattern, to form a bigger cycle after MD relocations, which are discussed in this paper.
IEEE Transactions on Communications

Suggestions

A General Non-Binary LDPC Code Optimization Framework Suitable for Dense Flash Memory and Magnetic Storage
Hareedy, Ahmed; Lanka, Chinmayi; Dolecek, Lara (2016-09-01)
© 2017 IEEE.Transmission channels underlying modern dense storage systems, e.g., Flash memory and magnetic recording (MR) systems, significantly differ from canonical channels, like additive white Gaussian noise (AWGN) channels. While existing low-density parity-check (LDPC) codes optimized for symmetric, AWGN-like channels are being actively considered for Flash applications, we demonstrate that, due to channel asymmetry, such approaches are inadequate. We introduce a refined definition of absorbing sets, ...
A Parallel Numerical Solver Using Hierarchically Tiled Arrays
Brodman, James C.; Evans, G. Carl; Manguoğlu, Murat; Sameh, Ahmed; Garzaran, Maria J.; Padua, David (2011-01-01)
Solving linear systems is an important problem for scientific computing. Exploiting parallelism is essential for solving complex systems. and this traditionally involves writing parallel algorithms on top of a library such as MPI. The SPIKE family of algorithms is one well-known example of a parallel solver for linear systems. The Hierarchically Tiled Array data type extends traditional data-parallel array operations with explicit tiling and allows programmers to directly manipulate tiles. The tiles of the...
Recursive Prediction for Joint Spatial and Temporal Prediction in Video Coding
Kamışlı, Fatih (2014-06-01)
Video compression systems use prediction to reduce redundancies present in video sequences along the temporal and spatial dimensions. Standard video coding systems use either temporal or spatial prediction on a per block basis. If temporal prediction is used, spatial information is ignored. If spatial prediction is used, temporal information is ignored. This may be a computationally efficient approach, but it does not effectively combine temporal and spatial information. In this letter, we provide a framewo...
A Combinatorial Methodology for Optimizing Non-Binary Graph-Based Codes: Theoretical Analysis and Applications in Data Storage
Hareedy, Ahmed; Lanka, Chinmayi; Guo, Nian; Dolecek, Lara (2019-04-01)
© 2018 IEEE.Non-binary (NB) low-density parity-check (LDPC) codes are graph-based codes that are increasingly being considered as a powerful error correction tool for modern dense storage devices. Optimizing NB-LDPC codes to overcome their error floor is one of the main code design challenges facing storage engineers upon deploying such codes in practice. Furthermore, the increasing levels of asymmetry incorporated by the channels underlying modern dense storage systems, e.g., multi-level Flash systems, exa...
AN ELECTROMAGNETIC ENERGY HARVESTER FOR LOW FREQUENCY AND LOW-G VIBRATIONS WITH A MODIFIED FREQUENCY UP CONVERSION METHOD
Zorlu, Ozge; Turkyilmaz, Serol; Muhtaroglu, Ali; Külah, Haluk (2013-01-24)
This paper presents a MEMS-based electromagnetic (EM) energy harvester for low frequency and low acceleration vibrations. The harvester is an improved version of [1], which operates with the frequency up conversion (FupC) principle. The former structure was composed of a low-frequency diaphragm carrying a magnet and 16 high-frequency cantilevers with coils. In this work, the phase difference between the coil outputs, leading to voltage cancellation in serial connection, has been eliminated by using a single...
Citation Formats
A. Hareedy, R. Kuditipudi, and R. Calderbank, “Minimizing the Number of Detrimental Objects in Multi-Dimensional Graph-Based Codes,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5299–5312, 2020, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/98521.