Encapsulation of Caffeic Acid in Carob Bean Flour and Whey Protein-Based Nanofibers via Electrospinning

Download
2022-07-01
The purpose of this study was to introduce caffeic acid (CA) into electrospun nanofibers made of carob flour, whey protein concentrate (WPC), and polyethylene oxide (PEO). The effects of WPC concentration (1% and 3%) and CA additions (1% and 10%) on the characteristics of solutions and nanofibers were investigated. The viscosity and electrical conductivity of the solutions were examined to determine characteristics of solutions. Scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), water vapor permeability (WVP), and Fourier transform infrared (FTIR) analysis were used to characterize the nanofibers. According to the SEM results, the inclusion of CA into nanofibers resulted in thinner nanofibers. All nanofibers exhibited uniform morphology. CA was efficiently loaded into nanofibers. When CA concentrations were 1% and 10%, loading efficiencies were 76.4% and 94%, respectively. Nanofibers containing 10% CA demonstrated 92.95% antioxidant activity. The results indicate that encapsulating CA into carob flour–WPC-based nanofibers via electrospinning is a suitable method for active packaging applications.

Suggestions

ENCAPSULATION OF CAFFEIC ACID IN CAROB BEAN FLOUR AND WHEY PROTEIN-BASED NANOFIBERS BY ELECTROSPINNING
Zeren, Sema; Şahin, Serpil; Şümnü, Servet Gülüm; Department of Food Engineering (2022-11-21)
The purpose of this study was to introduce caffeic acid (CA) into electrospun nanofibers made of carob flour, whey protein concentrate (WPC), and polyethylene oxide (PEO). The effects of WPC concentration (1% and 3%) and CA additions (1% and 10%) on the characteristics of solutions and nanofibers were investigated. The viscosity and electrical conductivity of the solutions were examined to determine characteristics of solutions. Scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric ...
Encapsulation of Grape Seed Extract in Rye Flour and Whey Protein-Based Electrospun Nanofibers
Aslaner, Gizem; Şümnü, Servet Gülüm; Şahin, Serpil (2021-03-01)
The objective of this research was to incorporate grape seed extract (GSE) into electrospun nanofibers produced from rye flour, whey protein concentrate (WPC), and polyethylene oxide (PEO). The effects of rye flour concentration (4% and 6%) and heating methods (conventional and microwave) on the properties of solutions and nanofibers were studied. Rheology results showed that microwave-heated solutions containing 6% rye flour had higher viscosity. According to the SEM images, the developed fibers obtained f...
Encapsulation of grape seed extract in rye flour and whey protein-based electrospun nanofibers
Aslaner, Gizem; Şümnü, Servet Gülüm; Şahin, Serpil; Department of Food Engineering (2021-6)
The main objective of this research was to encapsulate grape seed extract (GSE) into electrospun nanofibers produced from different blends of rye flour, whey protein concentrate (WPC) and polyethylene oxide (PEO). The effects of rye flour concentration (4 and 6% (w/v)) and heating methods (conventional and microwave) on the properties of solutions and nanofibers were studied. Rheology results showed that microwave heated solutions containing 6% (w/v) rye flour had higher viscosity. According to the scanning...
Encapsulation of vitamin B1 using double emulsion method
Yüce Altuntaş, Özlem; Şümnü, Servet Gülüm; Şahin, Serpil; Department of Food Engineering (2016)
The main objective of the study was to encapsulate Vitamin B1 in the inner aqueous phase of water-in-oil-in-water (W/O/W) type double emulsion containing hazelnut oil as oil phase and to transfer it to food products for enrichment. It was also aimed to replace the synthetic Polyglycerol Polyricinoleate (PGPR) with lecithin and to study the influence of homogenization methods on double emulsion characteristics. The expected type of emulsion, water in oil (W/O), could not be obtained by using only lecithin so...
UTILIZATION OF CURCUMIN AND BIODEGRADABLE POLYMERS IN INTELLIGENT AND ACTIVE FOOD PACKAGING
YILDIZ, Eda; Şümnü, Servet Gülüm; Kahyaoğlu, Leyla Nesrin; Department of Food Engineering (2022-12-21)
The main purpose of this study is to produce smart and active packages with curcumin using biodegradable polymers. To fulfill this aim, two different film making methods namely electrospinning and casting were used. Firstly, to take benefit of the halochromic properties of curcumin, it was encapsulated into chitosan/PEO based nanofibers to monitor food freshness. The average diameter of the fibers was found to be between 283 ± 27 nm and 338 ± 35 nm. It was concluded that increasing the chitosan amount in na...
Citation Formats
S. Zeren, S. Şahin, and S. G. Şümnü, “Encapsulation of Caffeic Acid in Carob Bean Flour and Whey Protein-Based Nanofibers via Electrospinning,” Foods, vol. 11, no. 13, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/98537.