Assessment of curcumin incorporated chickpea flour/PEO (polyethylene oxide) based electrospun nanofiber as an antioxidant and antimicrobial food package

2022-09-01
© 2022 Institution of Chemical EngineersThis study aimed to obtain curcumin encapsulated nanofibers as a potential food package and analyze physical properties and functional attributes, including antioxidant and antimicrobial activities. Due to their non-toxic and biodegradable characteristics, chickpea flour/PEO were used as an external support matrix for curcumin. In this context, the effects of curcumin and heating methods (conventional and microwave) on solution and film properties were investigated. The SEM (Scanning Electron Microscope) images showed that the fiber morphology of the microwave-treated samples was as smooth as those of conventionally-treated ones. Neither the addition of curcumin nor the different heat treatments had any significant impact on the water vapor permeability of the samples. However, the addition of curcumin shifted the onset degradation temperatures of the samples (T5%) by nearly 20 °C. Both the DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) scavenging activities of the curcumin-containing and microwave-treated (CUR/MW) samples were higher than those of the conventionally-treated (CUR/CON) samples. Although CUR/MW film had an antimicrobial effect on E.coli (ATCC 11229), it did not have any effect on S.aureus (ATCC 43300). Therefore, microwave heating could be preferred instead of conventional heating owing to the former's time and energy efficiency characteristics and its higher level of contribution to film characteristics. It should also be noted that the addition of curcumin improved the functionality of the nanofiber films.
Food and Bioproducts Processing

Suggestions

Development of nanofiber based active packaging material by electrospinning technique and food validation
Aydoğdu, Ayça; Şümnü, Servet Gülüm; Department of Food Engineering (2019)
The main objective of this study was to encapsulate gallic acid in Hydroxypropyl methylcellulose (HPMC) and legume flours (lentil and pea) based nanofiber by electrospinning and to examine the usage of nanofibers as active packaging materials. Firstly, HPMC based homogenous nanofibers were fabricated and it was observed that the morphology of the fibers changed from the beaded structure to the uniform fiber structure by increasing the concentrations of the solutions. By choosing optimum HPMC concentration, ...
Formation and characterization of food grade liposome systems
Güner, Selen; Öztop, Halil Mecit; Department of Food Engineering (2015)
Liposomes are double-layered spherical vesicles made up of polar lipids and could be used in pharmaceutical, personal care, chemical and food industries to encapsulate both hydrophobic and hydrophilic compounds. Being biodegradable, biocompatible not having any toxic effects and having the ability to release the active agents when desired make these systems advantageous for many applications. The main natural sources used for liposome formation are egg and soy. In this study, egg and soy lecithin with highe...
Microencapsulation of phenolic compounds extracted from onion (Allium cepa) skin
AKDENIZ, Busra; Şümnü, Servet Gülüm; Şahin, Serpil (2018-07-01)
The objective of this study was to investigate the effect of different coating materials for encapsulation of phenolic compounds extracted from onion skin. As coating material, maltodextrin (MD) was combined with gum Arabic (GA), casein, or whey protein concentrate (WPC) at different ratios (8:2 and 6:4). Encapsulation efficiency, antioxidant activity, particle size distribution, and heat stability were analyzed in freeze dried microcapsules. The encapsulation efficiency values were found to be highest with...
Monitoring the effects of divalent ions (Mn+2 and Ca+2) in heat-set whey protein gels
Öztop, Halil Mecit; MCCARTHY, Michael J.; ROSENBERG, Moshe (Elsevier BV, 2014-04-01)
Exploring the effects of cations in whey protein-based gels (WPG) is of importance when these gels are used for controlled release applications in food systems. The objective of this study was to evaluate both water uptake and cation release from heat-set WPGs. Magnetic Resonance Imaging and NMR relaxometry were employed to study the uptake and release. A non-paramagnetic (Ca+2) and a paramagnetic cation (Mn+2) were incorporated into the WPG as model divalent cations. Cylindrical pieces of WPGs with mangane...
The effect of extrusion on the functional components and in vitro lycopene bioaccessibility of tomato pulp added corn extrudates
Tonyalı, Bade; Şensoy, İlkay; Karakaya, Sibel (2016-01-01)
The effect of processing on functional ingredients and their in vitro bioaccessibility should be investigated to develop better food products. Tomato pulp was added as a functional ingredient to extrudates. The effects of extrusion on the functional properties of the extrudates and the in vitro bioaccessibility of lycopene were investigated. Two different temperature sets were applied during extrusion: 80 degrees C, 90 degrees C, 100 degrees C and 130 degrees C and 80 degrees C, 100 degrees C, 130 degrees C...
Citation Formats
E. Yıldız, S. G. Şümnü, and L. N. Kahyaoğlu, “Assessment of curcumin incorporated chickpea flour/PEO (polyethylene oxide) based electrospun nanofiber as an antioxidant and antimicrobial food package,” Food and Bioproducts Processing, vol. 135, pp. 205–216, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85136327724&origin=inward.