Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An analytical approach for modelling unmanned aerial vehicles and base station interaction for disaster recovery scenarios
Download
Eugene Owilla_MSc_Thesis.pdf
Date
2022-8
Author
Owilla, Eugene
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
293
views
61
downloads
Cite This
Unmanned Aerial Vehicles (UAVs) are an emerging technology with the potential to be used in various sectors for a wide array of applications and services. In wireless networking, UAVs are a vital part of supplementary infrastructure aimed at improv- ing coverage principally during public safety crises. Due to their relatively low cost and scalability of use, there has been a mushrooming focus into the roles that UAVs can play in ameliorating service provided to stranded ground devices. Following a public safety crisis that impacts key communication infrastructure, large areas may lose cellular coverage. This prompts the need for the employment of D2D communi- cation frameworks as a complement. In this way, the region of interest remains active during recovery operations. In such critical conditions, timely response and network connectivity are important factors for reliable communication. For instance, D2D features facilitate direct communication between first responders and rescue teams. This study focuses on the mathematics of UAVs in the context of disaster recovery. Particularly, we aim to model a queuing framework comprising UAVs as mobile relay nodes between the stranded user devices and neighbouring operational base stations. We present an iterative solution with a novel method for generating initial conditions for the two-stage queuing model and evaluate it with a custom discrete-event simula- tion for very large queue sizes and further analyse the impact of mobile relaying on mean queue length, throughput, and response time.
Subject Keywords
UAV relay nodes
,
Disaster recovery
,
Two-stage queuing
,
Iterative solution
URI
https://hdl.handle.net/11511/99570
Collections
Northern Cyprus Campus, Thesis
Suggestions
OpenMETU
Core
Modeling and simulation of a small-sized Tiltrotor UAV
Çakıcı, Ferit; Leblebicioğlu, Mehmet Kemal (2012-10-01)
Unmanned aerial vehicles (UAVs) are remotely piloted or self-piloted aircrafts that can carry cameras, sensors, communication equipment and other payloads. Tiltrotor UAVs provide a unique platform that fulfills the needs for ever-changing mission requirements, by combining the desired features of hovering like a helicopter and reaching high forward speeds like an airplane, which might be a force multiplier in the battlefield. In this paper, the conceptual design and aerodynamical model of a realizable small...
A simulation study of ad hoc networking of UAVs with opportunistic resource utilization networks
Lilien, Leszek T.; BEN OTHMANE, Lotfi; Angın, Pelin; DECARLO, Andrew; Salih, Raed M.; BHARGAVA, Bharat (Elsevier BV, 2014-02-01)
Specialized ad hoc networks of unmanned aerial vehicles (UAVs) have been playing increasingly important roles in applications for homeland defense and security. Common resource virtualization techniques are mainly designed for stable networks; they fall short in providing optimal performance in more dynamic networks such as mobile ad hoc networks (MANETs)-due to their highly dynamic and unstable nature. We propose application of Opportunistic Resource Utilization Networks (Oppnets), a novel type of MANETs, ...
Unmanned Aerial Vehicle Domain: Areas of Research
Demir, Kadir Alpaslan; Cicibas, Halil; ARICA, NAFİZ (2015-07-01)
Unmanned aerial vehicles (UAVs) domain has seen rapid developments in recent years. As the number of UAVs increases and as the missions involving UAVs vary, new research issues surface. An overview of the existing research areas in the UAV domain has been presented including the nature of the work categorised under different groups. These research areas are divided into two main streams: Technological and operational research areas. The research areas in technology are divided into onboard and ground techno...
A Trust-based Approach for Secure Data Dissemination in a Mobile Peer-to-Peer Network of AVs
Bhargava, Bharat K.; Angın, Pelin; Ranchal, Rohit; Sivakumar, Ranjitkumar; Linderman, Mark; Sinclair, Asher (2012-03-01)
Mobile peer-to-peer networks of aerial vehicles (AVs) have become significant in collaborative tasks including military missions and search and rescue operations. However, the nature of the communication between the nodes in these networks makes the disseminated data prone to interception by malicious parties, which could cause serious harm for the designated mission of the network. In this paper, we propose an approach for secure data dissemination in a mobile peer-to-peer network, where the data disclosed...
Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles
Gökçe, Fatih; Üçoluk, Göktürk; Şahin, Erol; Kalkan, Sinan (MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2015-9)
Detection and distance estimation of micro unmanned aerial vehicles (mUAVs) is crucial for (i) the detection of intruder mUAVs in protected environments; (ii) sense and avoid purposes on mUAVs or on other aerial vehicles and (iii) multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Owilla, “An analytical approach for modelling unmanned aerial vehicles and base station interaction for disaster recovery scenarios,” M.S. - Master of Science, Middle East Technical University, 2022.